0

ویژگی های برنامه‌ریزی پویا

 
haj114
haj114
کاربر طلایی1
تاریخ عضویت : آبان 1391 
تعداد پست ها : 3991

ویژگی های برنامه‌ریزی پویا

اصل بهینگی

اگر بنا باشد پرانتزبندی کل عبارت بهینه شود، پرانتزبندی زیرمساله‌ها هم باید بهینه باشند. یعنی بهینه بودن مساله، بهینه بودن زیرمساله‌ها را ایجاب می‌کند. پس می‌توان از روش برنامه‌نویسی پویا استفاده کرد.

حل بهینه، سومین مرحله از بسط یک الگوریتم برنامه نویسی پویا برای مسائل بهینه سازی است. مراحل بسط چنین الگوریتمی به شرح زیر است:

1- ارائه یک ویژگی بازگشتی که حل بهینه ی نمونه ای از مسئله را به دست می دهد.

2- محاسبه مقدار حل بهینه به شیوه­ی جزء به کل.

3- بنا کردن یک حل نمونه به شیوه­ی جزء به کل.

تمام مسائل بهینه­سازی را نمی­توان با برنامه نویسی پویا حل کرد چرا که باید اصل بهینگی در مسئله صدق کند.

اصل بهینگی در یک مسئله صدق می کند اگر یک حل بهینه برای نمونه­ای از مسئله، همواره حاوی حل بهینه برای همه­ی زیر نمونه­ها باشد

در روش برنامه‌نویسی پویا اغلب از یک آرایه برای ذخیره نتایج جهت استفاده مجدد استفاده شده، و زیرمسائل به صورت جزء به کل حل می‌شوند. در مورد این مساله، ابتدا زیرمسائلی که تنها از دو ماتریس تشکیل شده‌اند محاسبه می‌شوند. سپس زیرمسائلی که از سه ماتریس تشکیل شده‌اند محاسبه می‌شوند. این دسته از زیرمسائل به زیرمسائلی متشکل از دو ماتریس تجزیه می‌شوند که قبلا محاسبات آنها صورت گرفته، و نتایج آنها در آرایه ذخیره شده اند. در نتیجه نیاز به محاسبه مجدد آنها نیست. به همین ترتیب در مرحله بعد زیرمسائل با چهار ماتریس محاسبه می‌شوند، و الی آخر.

درخت­های جست­وجوی دودویی بهینه

درخت جست و جوی دودویی یک درخت دودویی از عناصر است که معمولا کلید نامیده می­شوند به قسمی که:

1- هر گره حاوی یک کلید است.

2- کلیدهای موجود در زیردرخت چپ هر گره، کوچک­تر یا مساوی کلید آن گره هستند.

3- کلیدهای موجود در زیردرخت راست هر گره، بزرگ­تر یا مساوی کلید آن گره هستند

 

زیرسازه بهینه

استفاده از روش زیرسازه بهینه به این معناست که مسئله را به زیرمسئله‌هایی کوچک‌تر بشکانیم و برای هر یک از این زیرمسئله‌ها پاسخی بهینه بیابیم و پاسخ بهینه مسئلهٔ کلی را از کنار هم قرار دادن این پاسخ‌های بهینهٔ جزئی به دست آوریم. مثلاً در هنگام حل مسئلهٔ یافتن کوتاه‌ترین مسیر از یک رأس یک گراف به رأسی دیگر، می‌توانیم کوتاه‌ترین مسیر تا مقصد از همهٔ رئوس مجاور را به دست آوریم و از آن برای جواب کلی استفاده کنیم. به طور کلی حل مسئله از این روش شامل سه مرحله است.

  1. شکاندن مسئله به بخش‌های کوچک‌تر
  2. حل خود این زیرمسئله‌ها با شکاندن آن‌ها به صورت بازگشتی
  3. استفاده از پاسخ‌های جزئی برای یافتن پاسخ کلی

 

زیرمسئله‌های هم‌پوشان

گفته می‌شود مسئله‌ای دارای زیرمسئله‌های هم‌پوشان است اگر بتوان مسئله را به زیرمسئله‌های کوچکتری شکست که پاسخ هرکدام چند بار در طول فرایند حل مورد استفاده قرار بگیرد. برنامه‌ریزی پویا کمک می‌کند تا هر کدام از این پاسخ‌ها فقط یک بار محاسبه شوند فرایند حل از بابت دوباره‌کاری هزینه‌ای را متحمل نشود. برای مثال در دنباله فیبوناچی برای محاسبهٔ عدد چهارم دنباله به دانستن عدد سوم نیاز داریم. برای محاسبهٔ عدد پنجم هم باز به عدد سوم نیاز داریم. حال اگر مثلاًَ در شرایطی بخواهیم عدد ششم دنبالهٔ فیبوناچی را حساب کنیم، در این محاسبه هم مقدار عدد پنجم را می‌خواهیم و هم مقدار عدد چهارم را. اگر تصمیم بگیریم اعداد چهارم و پنجم را به نوبت حساب کنیم در هنگام محاسبهٔ هرکدام به مقدار عدد سوم نیاز پیدا می‌کنیم و باید دوباره آن را محاسبه کنیم. برای جلوگیری از این محاسبات چندباره، معمولاً الگوریتمهایی که مبتنی بر برنامه‌ریزی پویا هستند از یکی از دو راه زیر استفاده می‌کنند.

  • ’’’رویکرد بالا به پایین’’’: در این رویکرد مسئله به زیرمسئله‌هایی شکسته می‌شود و پاسخ هر زیرمسئله پس از محاسبه در جایی ذخیره می‌شود. در مراحل بعدی هر وقت به آن پاسخ نیاز بود پاسخ از روی حافظه خوانده می‌شود. این فرآیند ترکیبی از الگوریتم بازگشتی و ذخیره‌سازی در حافظه است.
  • ’’’رویکرد پایین به بالا’’’: در این رویکرد همهٔ زیرمسئله‌های مورد نیازر از کوچک به بزرگ حل می‌شوند و از جواب‌ها بلافاصله برای محاسبهٔ بعدی‌ها استفاده می‌شود و فرایند محاسبه تا رسیدن به زیرمسئلهٔ مورد نیاز (که در وافع مسئلهٔ اصلی ماست) ادامه می‌یابد. بدیهی‌ست که در این حالت استفاده از الگوریتم بازگشتی ضروری نیست. مثال زیر این تفاوت‌ها را روشن تر می‌کند.

 

مثال

 

یک پیاده‌سازی ساده از یک تابع برای یافتن عدد فیبوناچی nام می‌تواند به شکل زیر باشد.

   function fib(n)
       if n = 0 
           return 0
       else if n = 1 
           return 1
       return fib(n − 1) + fib(n − 2)

برای مثال اگر از چنین تابعی (fib(5 را بخواهیم، تابع‌هایی که صدا می‌شوند به شکل زیر خواهند بود.

  1. fib(5)
  2. fib(4) + fib(3)
  3. (fib(3) + fib(2)) + (fib(2) + fib(1))
  4. ((fib(2) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))
  5. (((fib(1) + fib(0)) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))

مشخص است که چنین فرایندی پر از محاسبات تکراری است.مثلاً عدد فیبوناچی دوم به تنهایی سه بار حساب شده‌است. در محاسبات بزرگ‌تر چنین تکرارهایی برنامه را به شدت کند می‌کنند. این الگوریتم دارای پیچیدگی زمانی نمایی است. حال فرض کنید ما یک آرایه دوتایی map داریم که عدد n را به مقدار عدد فیبوناچی nام مربوط کرده و ذخیره می‌کند. پیچیدگی زمانی چنین الگوریتمی n خواهد بود. همچنین میزان فضای اشغال‌شده‌اش هم از مرتبه n خواهد بود.

   var m := map(0 → 1, 1 → 1)
   function fib(n)
       if map m does not contain key n
           m[n] := fib(n − 1) + fib(n − 2)
       return m[n]

این نمونه‌ای از فرایند بالا به پایین بود. چون ابتدا مسئله را شکاندیم و بعد به محاسبه و ذخیرهٔ پاسخ زیرمسئله‌ها پرداختیم. در فرایند پایین به بالا برای حل چنین مسئله‌ای از عدد فیبوناچی یکم شروع می‌کنیم تا به عدد خواسته‌شده برسیم. بااین کار باز هم پیچیدگی زمانی از مرتبه n است.

function fib(n)
       var previousFib := 0, currentFib := 1
       if n = 0 
           return 0
       else if n = 1 
           return 1
       repeat n − 1 times
           var newFib := previousFib + currentFib
           previousFib := currentFib
           currentFib  := newFib
       return currentFib

برتری این روش به روش قبلی در این است که در این روش حتی به فضای ذخیره از مرتبه n هم نیازی نیست. فضای ذخیره از مرتبه 1 کفایت می‌کند. علت این که همیشه از رویکرد پایین به بالا استفاده نمی‌کنیم این است که گاهی از قبل نمی‌دانیم باید کدام زیرمسئله‌ها را حل کنیم تا به مرحله اصلی برسیم، یا این که مجبوریم زیرمسئله‌هایی که استفاده نمی‌شوند را هم حل کنیم.

 

  *  عَزیزٌ عَلَیَّ اَنْ اَرَی الْخَلْقَ وَلا تُری  *
********
چهارشنبه 3 مهر 1392  2:48 PM
تشکرات از این پست
aftabm
aftabm
کاربر طلایی1
تاریخ عضویت : مرداد 1392 
تعداد پست ها : 25059
محل سکونت : اصفهان

پاسخ به:ویژگی های برنامه‌ریزی پویا


نقل قول haj114

اصل بهینگی

اگر بنا باشد پرانتزبندی کل عبارت بهینه شود، پرانتزبندی زیرمساله‌ها هم باید بهینه باشند. یعنی بهینه بودن مساله، بهینه بودن زیرمساله‌ها را ایجاب می‌کند. پس می‌توان از روش برنامه‌نویسی پویا استفاده کرد.

حل بهینه، سومین مرحله از بسط یک الگوریتم برنامه نویسی پویا برای مسائل بهینه سازی است. مراحل بسط چنین الگوریتمی به شرح زیر است:

1- ارائه یک ویژگی بازگشتی که حل بهینه ی نمونه ای از مسئله را به دست می دهد.

2- محاسبه مقدار حل بهینه به شیوه­ی جزء به کل.

3- بنا کردن یک حل نمونه به شیوه­ی جزء به کل.

تمام مسائل بهینه­سازی را نمی­توان با برنامه نویسی پویا حل کرد چرا که باید اصل بهینگی در مسئله صدق کند.

اصل بهینگی در یک مسئله صدق می کند اگر یک حل بهینه برای نمونه­ای از مسئله، همواره حاوی حل بهینه برای همه­ی زیر نمونه­ها باشد

در روش برنامه‌نویسی پویا اغلب از یک آرایه برای ذخیره نتایج جهت استفاده مجدد استفاده شده، و زیرمسائل به صورت جزء به کل حل می‌شوند. در مورد این مساله، ابتدا زیرمسائلی که تنها از دو ماتریس تشکیل شده‌اند محاسبه می‌شوند. سپس زیرمسائلی که از سه ماتریس تشکیل شده‌اند محاسبه می‌شوند. این دسته از زیرمسائل به زیرمسائلی متشکل از دو ماتریس تجزیه می‌شوند که قبلا محاسبات آنها صورت گرفته، و نتایج آنها در آرایه ذخیره شده اند. در نتیجه نیاز به محاسبه مجدد آنها نیست. به همین ترتیب در مرحله بعد زیرمسائل با چهار ماتریس محاسبه می‌شوند، و الی آخر.

درخت­های جست­وجوی دودویی بهینه

درخت جست و جوی دودویی یک درخت دودویی از عناصر است که معمولا کلید نامیده می­شوند به قسمی که:

1- هر گره حاوی یک کلید است.

2- کلیدهای موجود در زیردرخت چپ هر گره، کوچک­تر یا مساوی کلید آن گره هستند.

3- کلیدهای موجود در زیردرخت راست هر گره، بزرگ­تر یا مساوی کلید آن گره هستند

 

زیرسازه بهینه

استفاده از روش زیرسازه بهینه به این معناست که مسئله را به زیرمسئله‌هایی کوچک‌تر بشکانیم و برای هر یک از این زیرمسئله‌ها پاسخی بهینه بیابیم و پاسخ بهینه مسئلهٔ کلی را از کنار هم قرار دادن این پاسخ‌های بهینهٔ جزئی به دست آوریم. مثلاً در هنگام حل مسئلهٔ یافتن کوتاه‌ترین مسیر از یک رأس یک گراف به رأسی دیگر، می‌توانیم کوتاه‌ترین مسیر تا مقصد از همهٔ رئوس مجاور را به دست آوریم و از آن برای جواب کلی استفاده کنیم. به طور کلی حل مسئله از این روش شامل سه مرحله است.

  1. شکاندن مسئله به بخش‌های کوچک‌تر
  2. حل خود این زیرمسئله‌ها با شکاندن آن‌ها به صورت بازگشتی
  3. استفاده از پاسخ‌های جزئی برای یافتن پاسخ کلی

 

زیرمسئله‌های هم‌پوشان

گفته می‌شود مسئله‌ای دارای زیرمسئله‌های هم‌پوشان است اگر بتوان مسئله را به زیرمسئله‌های کوچکتری شکست که پاسخ هرکدام چند بار در طول فرایند حل مورد استفاده قرار بگیرد. برنامه‌ریزی پویا کمک می‌کند تا هر کدام از این پاسخ‌ها فقط یک بار محاسبه شوند فرایند حل از بابت دوباره‌کاری هزینه‌ای را متحمل نشود. برای مثال در دنباله فیبوناچی برای محاسبهٔ عدد چهارم دنباله به دانستن عدد سوم نیاز داریم. برای محاسبهٔ عدد پنجم هم باز به عدد سوم نیاز داریم. حال اگر مثلاًَ در شرایطی بخواهیم عدد ششم دنبالهٔ فیبوناچی را حساب کنیم، در این محاسبه هم مقدار عدد پنجم را می‌خواهیم و هم مقدار عدد چهارم را. اگر تصمیم بگیریم اعداد چهارم و پنجم را به نوبت حساب کنیم در هنگام محاسبهٔ هرکدام به مقدار عدد سوم نیاز پیدا می‌کنیم و باید دوباره آن را محاسبه کنیم. برای جلوگیری از این محاسبات چندباره، معمولاً الگوریتمهایی که مبتنی بر برنامه‌ریزی پویا هستند از یکی از دو راه زیر استفاده می‌کنند.

  • ’’’رویکرد بالا به پایین’’’: در این رویکرد مسئله به زیرمسئله‌هایی شکسته می‌شود و پاسخ هر زیرمسئله پس از محاسبه در جایی ذخیره می‌شود. در مراحل بعدی هر وقت به آن پاسخ نیاز بود پاسخ از روی حافظه خوانده می‌شود. این فرآیند ترکیبی از الگوریتم بازگشتی و ذخیره‌سازی در حافظه است.
  • ’’’رویکرد پایین به بالا’’’: در این رویکرد همهٔ زیرمسئله‌های مورد نیازر از کوچک به بزرگ حل می‌شوند و از جواب‌ها بلافاصله برای محاسبهٔ بعدی‌ها استفاده می‌شود و فرایند محاسبه تا رسیدن به زیرمسئلهٔ مورد نیاز (که در وافع مسئلهٔ اصلی ماست) ادامه می‌یابد. بدیهی‌ست که در این حالت استفاده از الگوریتم بازگشتی ضروری نیست. مثال زیر این تفاوت‌ها را روشن تر می‌کند.

 

مثال

 

یک پیاده‌سازی ساده از یک تابع برای یافتن عدد فیبوناچی nام می‌تواند به شکل زیر باشد.

   function fib(n)
       if n = 0 
           return 0
       else if n = 1 
           return 1
       return fib(n − 1) + fib(n − 2)

برای مثال اگر از چنین تابعی (fib(5 را بخواهیم، تابع‌هایی که صدا می‌شوند به شکل زیر خواهند بود.

  1. fib(5)
  2. fib(4) + fib(3)
  3. (fib(3) + fib(2)) + (fib(2) + fib(1))
  4. ((fib(2) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))
  5. (((fib(1) + fib(0)) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))

مشخص است که چنین فرایندی پر از محاسبات تکراری است.مثلاً عدد فیبوناچی دوم به تنهایی سه بار حساب شده‌است. در محاسبات بزرگ‌تر چنین تکرارهایی برنامه را به شدت کند می‌کنند. این الگوریتم دارای پیچیدگی زمانی نمایی است. حال فرض کنید ما یک آرایه دوتایی map داریم که عدد n را به مقدار عدد فیبوناچی nام مربوط کرده و ذخیره می‌کند. پیچیدگی زمانی چنین الگوریتمی n خواهد بود. همچنین میزان فضای اشغال‌شده‌اش هم از مرتبه n خواهد بود.

   var m := map(0 → 1, 1 → 1)
   function fib(n)
       if map m does not contain key n
           m[n] := fib(n − 1) + fib(n − 2)
       return m[n]

این نمونه‌ای از فرایند بالا به پایین بود. چون ابتدا مسئله را شکاندیم و بعد به محاسبه و ذخیرهٔ پاسخ زیرمسئله‌ها پرداختیم. در فرایند پایین به بالا برای حل چنین مسئله‌ای از عدد فیبوناچی یکم شروع می‌کنیم تا به عدد خواسته‌شده برسیم. بااین کار باز هم پیچیدگی زمانی از مرتبه n است.

function fib(n)
       var previousFib := 0, currentFib := 1
       if n = 0 
           return 0
       else if n = 1 
           return 1
       repeat n − 1 times
           var newFib := previousFib + currentFib
           previousFib := currentFib
           currentFib  := newFib
       return currentFib

برتری این روش به روش قبلی در این است که در این روش حتی به فضای ذخیره از مرتبه n هم نیازی نیست. فضای ذخیره از مرتبه 1 کفایت می‌کند. علت این که همیشه از رویکرد پایین به بالا استفاده نمی‌کنیم این است که گاهی از قبل نمی‌دانیم باید کدام زیرمسئله‌ها را حل کنیم تا به مرحله اصلی برسیم، یا این که مجبوریم زیرمسئله‌هایی که استفاده نمی‌شوند را هم حل کنیم.

 


چهارشنبه 3 مهر 1392  2:49 PM
تشکرات از این پست
aftabm
aftabm
کاربر طلایی1
تاریخ عضویت : مرداد 1392 
تعداد پست ها : 25059
محل سکونت : اصفهان

پاسخ به:ویژگی های برنامه‌ریزی پویا


نقل قول aftabm

نقل قول haj114

اصل بهینگی

اگر بنا باشد پرانتزبندی کل عبارت بهینه شود، پرانتزبندی زیرمساله‌ها هم باید بهینه باشند. یعنی بهینه بودن مساله، بهینه بودن زیرمساله‌ها را ایجاب می‌کند. پس می‌توان از روش برنامه‌نویسی پویا استفاده کرد.

حل بهینه، سومین مرحله از بسط یک الگوریتم برنامه نویسی پویا برای مسائل بهینه سازی است. مراحل بسط چنین الگوریتمی به شرح زیر است:

1- ارائه یک ویژگی بازگشتی که حل بهینه ی نمونه ای از مسئله را به دست می دهد.

2- محاسبه مقدار حل بهینه به شیوه­ی جزء به کل.

3- بنا کردن یک حل نمونه به شیوه­ی جزء به کل.

تمام مسائل بهینه­سازی را نمی­توان با برنامه نویسی پویا حل کرد چرا که باید اصل بهینگی در مسئله صدق کند.

اصل بهینگی در یک مسئله صدق می کند اگر یک حل بهینه برای نمونه­ای از مسئله، همواره حاوی حل بهینه برای همه­ی زیر نمونه­ها باشد

در روش برنامه‌نویسی پویا اغلب از یک آرایه برای ذخیره نتایج جهت استفاده مجدد استفاده شده، و زیرمسائل به صورت جزء به کل حل می‌شوند. در مورد این مساله، ابتدا زیرمسائلی که تنها از دو ماتریس تشکیل شده‌اند محاسبه می‌شوند. سپس زیرمسائلی که از سه ماتریس تشکیل شده‌اند محاسبه می‌شوند. این دسته از زیرمسائل به زیرمسائلی متشکل از دو ماتریس تجزیه می‌شوند که قبلا محاسبات آنها صورت گرفته، و نتایج آنها در آرایه ذخیره شده اند. در نتیجه نیاز به محاسبه مجدد آنها نیست. به همین ترتیب در مرحله بعد زیرمسائل با چهار ماتریس محاسبه می‌شوند، و الی آخر.

درخت­های جست­وجوی دودویی بهینه

درخت جست و جوی دودویی یک درخت دودویی از عناصر است که معمولا کلید نامیده می­شوند به قسمی که:

1- هر گره حاوی یک کلید است.

2- کلیدهای موجود در زیردرخت چپ هر گره، کوچک­تر یا مساوی کلید آن گره هستند.

3- کلیدهای موجود در زیردرخت راست هر گره، بزرگ­تر یا مساوی کلید آن گره هستند

 

زیرسازه بهینه

استفاده از روش زیرسازه بهینه به این معناست که مسئله را به زیرمسئله‌هایی کوچک‌تر بشکانیم و برای هر یک از این زیرمسئله‌ها پاسخی بهینه بیابیم و پاسخ بهینه مسئلهٔ کلی را از کنار هم قرار دادن این پاسخ‌های بهینهٔ جزئی به دست آوریم. مثلاً در هنگام حل مسئلهٔ یافتن کوتاه‌ترین مسیر از یک رأس یک گراف به رأسی دیگر، می‌توانیم کوتاه‌ترین مسیر تا مقصد از همهٔ رئوس مجاور را به دست آوریم و از آن برای جواب کلی استفاده کنیم. به طور کلی حل مسئله از این روش شامل سه مرحله است.

  1. شکاندن مسئله به بخش‌های کوچک‌تر
  2. حل خود این زیرمسئله‌ها با شکاندن آن‌ها به صورت بازگشتی
  3. استفاده از پاسخ‌های جزئی برای یافتن پاسخ کلی

 

زیرمسئله‌های هم‌پوشان

گفته می‌شود مسئله‌ای دارای زیرمسئله‌های هم‌پوشان است اگر بتوان مسئله را به زیرمسئله‌های کوچکتری شکست که پاسخ هرکدام چند بار در طول فرایند حل مورد استفاده قرار بگیرد. برنامه‌ریزی پویا کمک می‌کند تا هر کدام از این پاسخ‌ها فقط یک بار محاسبه شوند فرایند حل از بابت دوباره‌کاری هزینه‌ای را متحمل نشود. برای مثال در دنباله فیبوناچی برای محاسبهٔ عدد چهارم دنباله به دانستن عدد سوم نیاز داریم. برای محاسبهٔ عدد پنجم هم باز به عدد سوم نیاز داریم. حال اگر مثلاًَ در شرایطی بخواهیم عدد ششم دنبالهٔ فیبوناچی را حساب کنیم، در این محاسبه هم مقدار عدد پنجم را می‌خواهیم و هم مقدار عدد چهارم را. اگر تصمیم بگیریم اعداد چهارم و پنجم را به نوبت حساب کنیم در هنگام محاسبهٔ هرکدام به مقدار عدد سوم نیاز پیدا می‌کنیم و باید دوباره آن را محاسبه کنیم. برای جلوگیری از این محاسبات چندباره، معمولاً الگوریتمهایی که مبتنی بر برنامه‌ریزی پویا هستند از یکی از دو راه زیر استفاده می‌کنند.

  • ’’’رویکرد بالا به پایین’’’: در این رویکرد مسئله به زیرمسئله‌هایی شکسته می‌شود و پاسخ هر زیرمسئله پس از محاسبه در جایی ذخیره می‌شود. در مراحل بعدی هر وقت به آن پاسخ نیاز بود پاسخ از روی حافظه خوانده می‌شود. این فرآیند ترکیبی از الگوریتم بازگشتی و ذخیره‌سازی در حافظه است.
  • ’’’رویکرد پایین به بالا’’’: در این رویکرد همهٔ زیرمسئله‌های مورد نیازر از کوچک به بزرگ حل می‌شوند و از جواب‌ها بلافاصله برای محاسبهٔ بعدی‌ها استفاده می‌شود و فرایند محاسبه تا رسیدن به زیرمسئلهٔ مورد نیاز (که در وافع مسئلهٔ اصلی ماست) ادامه می‌یابد. بدیهی‌ست که در این حالت استفاده از الگوریتم بازگشتی ضروری نیست. مثال زیر این تفاوت‌ها را روشن تر می‌کند.

 

مثال

 

یک پیاده‌سازی ساده از یک تابع برای یافتن عدد فیبوناچی nام می‌تواند به شکل زیر باشد.

   function fib(n)
       if n = 0 
           return 0
       else if n = 1 
           return 1
       return fib(n − 1) + fib(n − 2)

برای مثال اگر از چنین تابعی (fib(5 را بخواهیم، تابع‌هایی که صدا می‌شوند به شکل زیر خواهند بود.

  1. fib(5)
  2. fib(4) + fib(3)
  3. (fib(3) + fib(2)) + (fib(2) + fib(1))
  4. ((fib(2) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))
  5. (((fib(1) + fib(0)) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))

مشخص است که چنین فرایندی پر از محاسبات تکراری است.مثلاً عدد فیبوناچی دوم به تنهایی سه بار حساب شده‌است. در محاسبات بزرگ‌تر چنین تکرارهایی برنامه را به شدت کند می‌کنند. این الگوریتم دارای پیچیدگی زمانی نمایی است. حال فرض کنید ما یک آرایه دوتایی map داریم که عدد n را به مقدار عدد فیبوناچی nام مربوط کرده و ذخیره می‌کند. پیچیدگی زمانی چنین الگوریتمی n خواهد بود. همچنین میزان فضای اشغال‌شده‌اش هم از مرتبه n خواهد بود.

   var m := map(0 → 1, 1 → 1)
   function fib(n)
       if map m does not contain key n
           m[n] := fib(n − 1) + fib(n − 2)
       return m[n]

این نمونه‌ای از فرایند بالا به پایین بود. چون ابتدا مسئله را شکاندیم و بعد به محاسبه و ذخیرهٔ پاسخ زیرمسئله‌ها پرداختیم. در فرایند پایین به بالا برای حل چنین مسئله‌ای از عدد فیبوناچی یکم شروع می‌کنیم تا به عدد خواسته‌شده برسیم. بااین کار باز هم پیچیدگی زمانی از مرتبه n است.

function fib(n)
       var previousFib := 0, currentFib := 1
       if n = 0 
           return 0
       else if n = 1 
           return 1
       repeat n − 1 times
           var newFib := previousFib + currentFib
           previousFib := currentFib
           currentFib  := newFib
       return currentFib

برتری این روش به روش قبلی در این است که در این روش حتی به فضای ذخیره از مرتبه n هم نیازی نیست. فضای ذخیره از مرتبه 1 کفایت می‌کند. علت این که همیشه از رویکرد پایین به بالا استفاده نمی‌کنیم این است که گاهی از قبل نمی‌دانیم باید کدام زیرمسئله‌ها را حل کنیم تا به مرحله اصلی برسیم، یا این که مجبوریم زیرمسئله‌هایی که استفاده نمی‌شوند را هم حل کنیم.

 



 

چهارشنبه 3 مهر 1392  2:55 PM
تشکرات از این پست
aftabm
aftabm
کاربر طلایی1
تاریخ عضویت : مرداد 1392 
تعداد پست ها : 25059
محل سکونت : اصفهان

پاسخ به:ویژگی های برنامه‌ریزی پویا


نقل قول haj114

اصل بهینگی

اگر بنا باشد پرانتزبندی کل عبارت بهینه شود، پرانتزبندی زیرمساله‌ها هم باید بهینه باشند. یعنی بهینه بودن مساله، بهینه بودن زیرمساله‌ها را ایجاب می‌کند. پس می‌توان از روش برنامه‌نویسی پویا استفاده کرد.

حل بهینه، سومین مرحله از بسط یک الگوریتم برنامه نویسی پویا برای مسائل بهینه سازی است. مراحل بسط چنین الگوریتمی به شرح زیر است:

1- ارائه یک ویژگی بازگشتی که حل بهینه ی نمونه ای از مسئله را به دست می دهد.

2- محاسبه مقدار حل بهینه به شیوه­ی جزء به کل.

3- بنا کردن یک حل نمونه به شیوه­ی جزء به کل.

تمام مسائل بهینه­سازی را نمی­توان با برنامه نویسی پویا حل کرد چرا که باید اصل بهینگی در مسئله صدق کند.

اصل بهینگی در یک مسئله صدق می کند اگر یک حل بهینه برای نمونه­ای از مسئله، همواره حاوی حل بهینه برای همه­ی زیر نمونه­ها باشد

در روش برنامه‌نویسی پویا اغلب از یک آرایه برای ذخیره نتایج جهت استفاده مجدد استفاده شده، و زیرمسائل به صورت جزء به کل حل می‌شوند. در مورد این مساله، ابتدا زیرمسائلی که تنها از دو ماتریس تشکیل شده‌اند محاسبه می‌شوند. سپس زیرمسائلی که از سه ماتریس تشکیل شده‌اند محاسبه می‌شوند. این دسته از زیرمسائل به زیرمسائلی متشکل از دو ماتریس تجزیه می‌شوند که قبلا محاسبات آنها صورت گرفته، و نتایج آنها در آرایه ذخیره شده اند. در نتیجه نیاز به محاسبه مجدد آنها نیست. به همین ترتیب در مرحله بعد زیرمسائل با چهار ماتریس محاسبه می‌شوند، و الی آخر.

درخت­های جست­وجوی دودویی بهینه

درخت جست و جوی دودویی یک درخت دودویی از عناصر است که معمولا کلید نامیده می­شوند به قسمی که:

1- هر گره حاوی یک کلید است.

2- کلیدهای موجود در زیردرخت چپ هر گره، کوچک­تر یا مساوی کلید آن گره هستند.

3- کلیدهای موجود در زیردرخت راست هر گره، بزرگ­تر یا مساوی کلید آن گره هستند

 

زیرسازه بهینه

استفاده از روش زیرسازه بهینه به این معناست که مسئله را به زیرمسئله‌هایی کوچک‌تر بشکانیم و برای هر یک از این زیرمسئله‌ها پاسخی بهینه بیابیم و پاسخ بهینه مسئلهٔ کلی را از کنار هم قرار دادن این پاسخ‌های بهینهٔ جزئی به دست آوریم. مثلاً در هنگام حل مسئلهٔ یافتن کوتاه‌ترین مسیر از یک رأس یک گراف به رأسی دیگر، می‌توانیم کوتاه‌ترین مسیر تا مقصد از همهٔ رئوس مجاور را به دست آوریم و از آن برای جواب کلی استفاده کنیم. به طور کلی حل مسئله از این روش شامل سه مرحله است.

  1. شکاندن مسئله به بخش‌های کوچک‌تر
  2. حل خود این زیرمسئله‌ها با شکاندن آن‌ها به صورت بازگشتی
  3. استفاده از پاسخ‌های جزئی برای یافتن پاسخ کلی

 

زیرمسئله‌های هم‌پوشان

گفته می‌شود مسئله‌ای دارای زیرمسئله‌های هم‌پوشان است اگر بتوان مسئله را به زیرمسئله‌های کوچکتری شکست که پاسخ هرکدام چند بار در طول فرایند حل مورد استفاده قرار بگیرد. برنامه‌ریزی پویا کمک می‌کند تا هر کدام از این پاسخ‌ها فقط یک بار محاسبه شوند فرایند حل از بابت دوباره‌کاری هزینه‌ای را متحمل نشود. برای مثال در دنباله فیبوناچی برای محاسبهٔ عدد چهارم دنباله به دانستن عدد سوم نیاز داریم. برای محاسبهٔ عدد پنجم هم باز به عدد سوم نیاز داریم. حال اگر مثلاًَ در شرایطی بخواهیم عدد ششم دنبالهٔ فیبوناچی را حساب کنیم، در این محاسبه هم مقدار عدد پنجم را می‌خواهیم و هم مقدار عدد چهارم را. اگر تصمیم بگیریم اعداد چهارم و پنجم را به نوبت حساب کنیم در هنگام محاسبهٔ هرکدام به مقدار عدد سوم نیاز پیدا می‌کنیم و باید دوباره آن را محاسبه کنیم. برای جلوگیری از این محاسبات چندباره، معمولاً الگوریتمهایی که مبتنی بر برنامه‌ریزی پویا هستند از یکی از دو راه زیر استفاده می‌کنند.

  • ’’’رویکرد بالا به پایین’’’: در این رویکرد مسئله به زیرمسئله‌هایی شکسته می‌شود و پاسخ هر زیرمسئله پس از محاسبه در جایی ذخیره می‌شود. در مراحل بعدی هر وقت به آن پاسخ نیاز بود پاسخ از روی حافظه خوانده می‌شود. این فرآیند ترکیبی از الگوریتم بازگشتی و ذخیره‌سازی در حافظه است.
  • ’’’رویکرد پایین به بالا’’’: در این رویکرد همهٔ زیرمسئله‌های مورد نیازر از کوچک به بزرگ حل می‌شوند و از جواب‌ها بلافاصله برای محاسبهٔ بعدی‌ها استفاده می‌شود و فرایند محاسبه تا رسیدن به زیرمسئلهٔ مورد نیاز (که در وافع مسئلهٔ اصلی ماست) ادامه می‌یابد. بدیهی‌ست که در این حالت استفاده از الگوریتم بازگشتی ضروری نیست. مثال زیر این تفاوت‌ها را روشن تر می‌کند.

 

مثال

 

یک پیاده‌سازی ساده از یک تابع برای یافتن عدد فیبوناچی nام می‌تواند به شکل زیر باشد.

   function fib(n)
       if n = 0 
           return 0
       else if n = 1 
           return 1
       return fib(n − 1) + fib(n − 2)

برای مثال اگر از چنین تابعی (fib(5 را بخواهیم، تابع‌هایی که صدا می‌شوند به شکل زیر خواهند بود.

  1. fib(5)
  2. fib(4) + fib(3)
  3. (fib(3) + fib(2)) + (fib(2) + fib(1))
  4. ((fib(2) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))
  5. (((fib(1) + fib(0)) + fib(1)) + (fib(1) + fib(0))) + ((fib(1) + fib(0)) + fib(1))

مشخص است که چنین فرایندی پر از محاسبات تکراری است.مثلاً عدد فیبوناچی دوم به تنهایی سه بار حساب شده‌است. در محاسبات بزرگ‌تر چنین تکرارهایی برنامه را به شدت کند می‌کنند. این الگوریتم دارای پیچیدگی زمانی نمایی است. حال فرض کنید ما یک آرایه دوتایی map داریم که عدد n را به مقدار عدد فیبوناچی nام مربوط کرده و ذخیره می‌کند. پیچیدگی زمانی چنین الگوریتمی n خواهد بود. همچنین میزان فضای اشغال‌شده‌اش هم از مرتبه n خواهد بود.

   var m := map(0 → 1, 1 → 1)
   function fib(n)
       if map m does not contain key n
           m[n] := fib(n − 1) + fib(n − 2)
       return m[n]

این نمونه‌ای از فرایند بالا به پایین بود. چون ابتدا مسئله را شکاندیم و بعد به محاسبه و ذخیرهٔ پاسخ زیرمسئله‌ها پرداختیم. در فرایند پایین به بالا برای حل چنین مسئله‌ای از عدد فیبوناچی یکم شروع می‌کنیم تا به عدد خواسته‌شده برسیم. بااین کار باز هم پیچیدگی زمانی از مرتبه n است.

function fib(n)
       var previousFib := 0, currentFib := 1
       if n = 0 
           return 0
       else if n = 1 
           return 1
       repeat n − 1 times
           var newFib := previousFib + currentFib
           previousFib := currentFib
           currentFib  := newFib
       return currentFib

برتری این روش به روش قبلی در این است که در این روش حتی به فضای ذخیره از مرتبه n هم نیازی نیست. فضای ذخیره از مرتبه 1 کفایت می‌کند. علت این که همیشه از رویکرد پایین به بالا استفاده نمی‌کنیم این است که گاهی از قبل نمی‌دانیم باید کدام زیرمسئله‌ها را حل کنیم تا به مرحله اصلی برسیم، یا این که مجبوریم زیرمسئله‌هایی که استفاده نمی‌شوند را هم حل کنیم.

 


چهارشنبه 3 مهر 1392  2:56 PM
تشکرات از این پست
دسترسی سریع به انجمن ها