الگوریتم سیمپلکس که توسط جورج دانتزینگ شکل گرفت، مسائل برنامهریزی خطی را به این ترتیب حل میکند که یک جواب قابل قبول در یکی از رئوس چندضلعی فراهم میکند و سپس در راستای اضلاع چندضلعی به طرف رئوسی با مقدار بالاتری از تابع هدف حرکت میکند تا این که به نقطه بهینه برسد. اگرچه در عمل این الگوریتم بسیار کارآمد است و میتواند با در نظر گرفتن برخی پیشگیریهای مربوط به جلوگیری از ایجاد دور، با اطمینان جواب بهینه مطلق را بیابد، اما در حالاتی که به اصطلاح بدترین حالت نامیده میشوند عملکرد بدی دارد. تا حدی که میتوان مسائل برنامهریزی خطی طراحی کرد که روش سیمپلکس برای حلشان در برخی مراحل زمانی از مرتبه زمانی نمایی نیاز داشته باشد. حتی در دورانی دانشمندان نمیدانستند که این مسائل راه حل چندجملهای هم دارند.
سرانجام این مسئله را لئونید خاچیان در سال ۱۹۷۹ با ارائه روش بیضوی حل کرد. این روش در بدترین حالت هم دارای زمان اجرای چندجملهای بود. این روش تأتیر چندانی در جنبهٔ عملی مسئله نداشت چرا که همچنان روش سیمپلکس در همه موارد به جز تعداد محدودی از مسائل بهتر عمل میکرد. اما اهمیت نظری روش خاچیان غیرقابلانکار بود. این روش الهامبخش به وجود آمدن نسل جدیدی از راهحلها شد که به آنها روش نقطه داخلی گفته میشود. در این روشها نقاط داخلی محدوده قابل بررسی متغیرها پیموده میشود و به سمت نقطه بهینه حرکت انجام میگیرد.