0

فناوری نانو

 
mohamadaminsh
mohamadaminsh
کاربر طلایی1
تاریخ عضویت : دی 1389 
تعداد پست ها : 25772
محل سکونت : خوزستان

پاسخ به:فناوری نانو



با فن آوري نانو سلولهاي سرطاني را پیدا کنید

دانشمندان روبشگرهاي پزشکي نانومقياسي ساخته اند که توسط تصويربرداري رزونانس ( MRI ) مغناطيسي و ميکروسکوپي نوري قابل مشاهده هستند.
بنابر گفته اين دانشمندان، اين روبشگرها که از نانوميله هاي طلا و ذرات مغناطيسي ساخته شده اند، پس از هدفگيري بافت سرطاني مي توانند به راحتي ردگيري شوند.در چند سال اخير، تحقيقات بسيار زيادي روي روبشگرهاي پزشکي که مي توانند بخش هاي بيمار بدن انسان را به صورت همزمان هدفگيري، رديابي و درمان نمايند، صورت گرفته است. يکي از روشهاي ردگيري اين است که اين روبشگرها را روي ذرات مغناطيسي سوار کرد که در تصويربرداري هاي MRI به راحتي قابل مشاهده هستند.ميدانهاي مغناطيسي MRI داخل بافتهاي بدن نفوذ مي کنند، اما اين روش تصويربرداري از دقت بالايي برخوردار نيست. روش ديگري که از دقت بالايي برخوردار است، اتصال اين روبشگرها به ذرات «لومينسانس» است؛ نوري که از اين ذرات ساطع مي شود، به راحتي توسط ميکروسکوپ نوري قابل مشاهده است. با اين حال، مشکل ميکروسکوپي نوري اين است که تنها قادر به ديدن اشيايي است که نزديک سطح قرار دارند.
جوزف ايروداياراج و همکارانش در دانشگاه پوردو در ايندياناي آمريکا، براي اولين بار روبشگرهايي ساخته اند که از مزاياي هر دو روش تصويربرداري مغناطيسي و ميکروسکوپي نوري بهره مي برند. آنها از روش رسوب دهي بخار براي ايجاد نانوميله هاي طلا استفاده نموده و گروه هاي آميني را روي آنها متصل مي کنند. سپس نانوذرات مغناطيسي پوشيده شده با گروه هاي کربوکسيليک اسيد را به آن مي افزايند. اين گروه هاي اسيدي به آمين ها متصل شده و ساختارهايي شبيه گردن بند مرواريد را تشکيل مي دهند. در نهايت «هرسپتين» را که يک پادتن مورد استفاده در درمان سرطان سينه است، به اين روبشگرها متصل مي کنند.به گزارش ايسکانيوز به نقل از نانو، اين گروه پژوهشي در آزمايشهايي که روي سلولهاي سرطاني کشت شده انجام دادند، دريافتند که تصويربرداري هاي MRI از روبشگر جديد آنها (کامپوزيتي از ذرات اکسيد آهن به همراه نانوميله هاي طلا) تصاويري با کنتراست بالاتر در مقايسه با ذرات اکسيد آهن خالص ايجاد مي نمايد. آنها بر اين باورند، نحوه آرايش نانوذرات اکسيد آهن در اطراف نانوميله هاي طلا موجب تقويت خاصيت مغناطيسي آنها مي شود. همانگونه که انتظار پيش بيني مي شود، تصاوير فلورسانس به دست آمده در ناحيه فروسرخ نزديک، دقيق بوده و روبشگرهاي حاوي هرسپتين را که به سلولهاي سرطاني متصل شده اند، نشان مي دهد.

www.qudsdaily.com

کریمی که جهان پاینده دارد               تواند حجتی را زنده دارد

 

دانلود پروژه و کارآموزی و کارافرینی

پنج شنبه 12 بهمن 1391  7:28 PM
تشکرات از این پست
mohamadaminsh
mohamadaminsh
کاربر طلایی1
تاریخ عضویت : دی 1389 
تعداد پست ها : 25772
محل سکونت : خوزستان

پاسخ به:فناوری نانو




آشنایی با نانوپليمرها

1. مقدمه

خواص مواد پليمري به شدت وابسته به اندازه و مورفولوژي آنهاست. تفاوت رفتار پليمرهاي آلي در مقياس نانومتر نسبت به نمونه هاي توده و مشخصه هاي طيفي اين مواد، گواه اين مدعاست. همچنين وابستگي طيف هاي UV و IR به اندزه ذرات، به دفعات مشاهده شده است. با توجه به وابستگي ذاتي خواص مکانيکي و ترموفيزيکي (خواص فيزيکي وابسته به دما نظير: کشش، سختي و...) پليمرها به ابعادشان، قابليت تهيه و کنترل مواد پليمري در مقياس نانومتر براي بهبود خواص و گسترش کاربردشان در طيف وسيعي از صنايع از رهايش دارو در پزشکي تا صنايع الکترونيکي شامل: سلولهاي فتوولتائيک، باتريهاي پلاستيکي و ديودهاي نشر نور حائز اهميت است. به همين دليل، روش هاي مختلفي پليمريزاسيون اعم از شيميايي و الکتروشيميايي همگي مترصدند تا ساختارهاي نانوذره، نانو و ميکرولوله و نانوالياف را از پليمرها تهيه نمايند.
اندازه کوچک‌ترين بعد يک نانوساختار پليمري مي‌بايست در محدوده 1 تا 100 نانومتر قرار گيرد و اين در صورتي‌ است که اندازه مارپيچ يک زنجير پليمري در محلولي رقيق، در اين محدوده قرار دارد. هرچند که اين مارپيچ‌ها از نظر ساختاري چندان پايدار نبوده و با زمان محتمل تغييرات مي‌شوند.
از جمله پليمرهايي که در بحث نانومواد جايگاه ويژه‌اي دارند، پليمرهاي رسانا مي‌باشند. پليمرهاي رسانا که در طول سه دهه اخير توجه زيادي را به خود معطوف داشته‌اند، به سبب تغيير در خواص نوري و الکتريکي‌شان در ابعاد نانومتر، محتمل‌ترين سيستم‌ها براي کاربردهاي نانوالکترونيک مي‌باشند. خانواده پلي‌آنيلين نمونه‌اي از اين پليمرهاست. نظر به اين‌که پلي‌آنيلين مي‌تواند مورفولوژي‌هاي تک‌بعدي نظير نانولوله، نانوسيم، نانوذرات کلوئيدي و نانوالياف را توليد نمايد؛ تحقيقات زيادي متوجه آن است.

2. کاربردهاي نانوپليمرها
1-2) روکش دارو

يکي از طبقه‌هاي بزرگ سيستم رهايش دارو، موادي هستند که جهت محافظت دارو به هنگام انتقال در بدن به صورت روکش، دارو را دربرمي‌گيرند. اين مواد عبارتند از: ليپوزوم و پليمرها که در ابعاد ميکرو به کار مي‌روند.
هنگامي که مواد روکش به صورت نانوذرات ساخته شوند، داراي سطحي بزرگ‌تر با همان حجم، اندازه منافذ ريزتر، حلاليت بهتر و خواص ساختاري متفاوت خواهند بود. اين عوامل سبب نفوذ و تخريب بهتر غلاف خواهد شد.
اخيراً دانشمندان در حال بررسي ساخت سيستم‌هاي رهايش دارو بر اساس نانوذارت مي‌باشند. به طور مثال آن‌ها در درمان تومورهاي مغزي؛ از نانوذرات استفاده کرده‌اند. داروي ضدتومور به ذرات يک نانوپليمر به نام بوتيل‌سيانو‌ (PBCA) مي‌چسبد و با پلي‌سوربات 80 روکش مي‌شود.

2-2) حامل‌هاي دارو

طبقه ديگري از سيستم‌هاي رهايش دارو که فناوري نانو راه‌کارهاي جالبي در آن ارائه داده است؛ نانوموادي هستند که دارو را به محل مورد نظر در بدن هدايت مي‌کنند.
يکي از نانوموادي که مورد توجه مي‌باشد؛ درخت‌سان است. درخت‌سان يک مولکول پليمري با شاخه‌هاي جانبي مي‌باشد که اولين بار توسط دون توماليا (Don tomalia) کشف شد. محققان از اين ماده جهت رسيدن به مواد ژنتيکي يا از بين بردن تومور درون سلول‌ها بدون نياز به پاسخ سريع، استفاده مي‌کنند. اين ويژگي به دليل اندازه کوچک درخت‌سان‌ها و ساختار شاخه‌اي آن‌هاست.

3-2) مواد قابل کاشت در بدن

يکي از کاربردهاي نانوپليمرها، تهيه مواد زيست‌سازگار جهت ترميم و جاي‌گذاري بافت‌هاي انساني مي‌باشد. به طور مثال؛ نانوپليمرهايي مانند پلي‌وينيل‌الکل (PVA) را مي‌توان جهت روکش دستگاهايي که در بدن کاشته مي‌شوند در تماس با خون هستند؛ مانند قلب مصنوعي و رگ‌ها به کار برد تا از تشکيل لخته جلوگيري کند يا لخته‌هاي تشکيل شده را پراکنده کند.
هم‌چنين، اکنون سلول‌هاي اپيتلياي قرنيه به صورت دانه‌هايي درون ساختار هيدروژني PVA در دست بررسي هستند. اين ماده پليمري مي‌تواند بيش از 20? وزن خود، آب جذب کند، در حالي‌ که ساختار سه‌بعدي خود را نيز حفظ کند.

4-2) ديوارهاي ضد زلزله

مؤسسه Leeds Nano Manufacturing، در حال ساخت ديوارهاي مخصوصي براي منازل است که داراي نانوذرات پليمري مي‌باشد. اين ذرات تحت فشار به مايع تبديل شده و درون ترک‌هاي ديوار جريان يافته و به ماده‌اي سخت تبديل مي‌شود.
در صورت موفقيت‌آميز بودن اين آزمايش، در مناطق زلزله‌خيز جهان خانه‌هايي مقاوم در برابر لرزش ساخته خواهد شد. اين ديوارها از جهت ديگري نيز ممتاز هستند؛ آن‌ها داراي حسگرهاي بي‌سيم و فاقد باتري و برچسب‌هاي شناسايي فرکانس راديويي هستند که اطلاعات وسيعي از قبيل هرگونه فشار و لرزش، حرارت، رطوبت و سطح گاز را در طول زمان در اختيار ما قرار مي‌دهند.

تبیان

کریمی که جهان پاینده دارد               تواند حجتی را زنده دارد

 

دانلود پروژه و کارآموزی و کارافرینی

پنج شنبه 12 بهمن 1391  7:28 PM
تشکرات از این پست
mohamadaminsh
mohamadaminsh
کاربر طلایی1
تاریخ عضویت : دی 1389 
تعداد پست ها : 25772
محل سکونت : خوزستان

پاسخ به:فناوری نانو



کاربرد نانو فناوري در صنعت آب و فاضلاب

افزايش جمعيت جهان و کاهش منابع آب آشاميدني ، نگراني هايي را در باره تامين آب آشاميدني مورد نياز کشورهاي مختلف در سراسر جهان به وجود آورده است و کمبود آب که در نتيجه افزايش آلودگي هاي زيست محيطي شدت پيدا مي کند ، سبب شده است تامين آب بهداشتي مورد نياز مردم به يکي از مشکلات اساسي جهان امروز تبديل شود امراض ناشي از آلودگي منابع آب ، روزانه سبب کشته شدن هزاران و شايد ده ها هزار نفر از مردم جهان مي شود . اين در حالي است که امکان بازيافت آب دسترسي به يک منبع مناسب براي مصارف گوناگون را فراهم خواهد آورد . امروزه به کمک فناوري هاي نوين الکتريکي و مکانيکي ، به آساني مي توان آب آلوده را درکشاورزي و حتي مصارف خانگي استفاده کرد . استفاده از فيلترهاي نانومتري ، تحول عظيمي را در بازيافت و استفاده مجدد از منابع آب ايجاد کرده است.
فيلترهاي فيزيکي با منافذي درحد نانومتر مي توانند باکتري ها، ويروس ها و حتي واحدهاي کوچک پروتئيني را به صورت کامل و صد درصد غربال کنند؛ همچنين با استفاده از جداکننده هاي الکتريکي که به وسيله صفحات ابرخازن يون ها را جذب مي کنند ، مي توان نمک و مواد سنگين را نيز از آب جدا کرد.
بررسي فعاليت هاي پژوهشي در سطح دنيا نشان مي دهد که تصفيه آب يکي از مهم ترين زمينه هاي کاربرد فناوري نانو در صنعت آب است و با بهره گيري از آن ، هزينه هاي تصفيه آب به ميزان قابل توجهي کاهش خواهد يافت . استفاده از فيلترهاي نانومتري به منظور افزايش بازيابي آب در سيستم هاي موجود و کاربرد نانو حسگرهاي زيستي براي تشخيص سريع و کامل آلودگي آب از مهم ترين موارد کاربرد نانو فناوري در صنعت آب و فاضلاب است .

نانوفيلترها

با استفاده از فناوري هاي نوين توليد آب نانوفيلتر شده در مقياس انبوه امکان پذير خواهد شد . اين روش مي تواند بسياري از موانع و مشکلات موجود در روش هاي قبلي را ازميان بردارد . با استفاده از نانوفيلترها ، مواد معدني مورد نياز براي سلامت انسان در آب باقي مي ماند ومواد سمي و مضر از آن حذف مي شود . دانشمندان و محققان به روش ساده اي براي توليد فيلترها با استفاده از نانولوله هاي کربني دست يافته اند که علاوه بر حذف موثر آلاينده ها در مقياس نانو و ميکرو از منابع آب مي تواند هيدروکربن هاي سنگين را نيز از نفت خام جدا کند. استفاده از نانولوله هاي کربني در ساخت فيلترها سبب سهولت در پاکسازي ، افزايش استحکام ، قابليت استفاده مجدد و مقاومت آنها در برابر گرما مي شود . اين فيلترها از دقت بسيار زيادي برخوردارند و مي توانند ويروس هايي به اندازه 25 نانومتر را بخوبي عوامل بيماري زاي بزرگتر مانند باکتري اي – کولاي از آب حذف کنند . کاهش هزينه ها و همچنين کنترل مقدار آلاينده ها در آب تصفيه شده از ديگر مزاياي کاربرد اين روش به شمار مي آيد .

شيرين کننده هايي از جنس غشاي نانومتري

محققان توانسته اند عشاهايي از نانولوله هاي کربي بسازند که به کمک آن جداسازي گاز و مايع با کمترين هزينه امکان پذير خواهد شد . امروزه بيشتر غشاها از مواد پليمري ساخته مي شوند که در دماي بالا مشکلاتي را به وجود مي آورند .در اين نوع غشاها نمي توان توازن مناسبي را ميان ورودي غشا و قابليت انتخاب آن برقرار کرد. استفاده ازنانولوله هاي کربني امکان انتخاب پذيري مناسب در ورودي هاي بالا را فراهم مي کند .غشاهاي جديد باحفره هاي کوچک تر و متراکم تر وهمچنين امکان عبور شدت جريان زياد از هر حفره ، از نظر گذردهي آب و هوا نسبت به غشاهاي ديگر بسيار موثرتر هستند و کاربردهاي فراواني در تصفيه آب دارند .از روش جداسازي غشايي ، در شيرين سازي آب استفاده مي شود . در اين روش آب شور داغ را روي ورقه نازکي از غشاي داراي حفرات ريز موسوم به نانو حفره مي ريزند . اين حفره ها آنقدر کوچک هستندکه فقط بخار مي تواند از ميان آنها عبور کند و آب ، مايع ، نمک هاو مواد معدني ديگر در پشت غشا باقي مي مانند. در طرف ديگر غشاء محفظه هايي از آب سرد قرار دارد که بخار با عبور از آن دوباره به مايع تبديل مي شود.

تصفيه آب به کمک نانوذرات

نانوذرات لانتانيوم ، فسفات را از محيط هاي آبي جذب مي کند .کاربرد اين نانوذرات درحوضچه ها و استخرهاي شنا مي تواند به طور موثري فسفات موجود را از ميان برده و در نتيجه از رشد جلبک ها جلوگيري کند .نانوپودرها نيز ميتوانند به عنوان مواد مناسبي براي پاکسازي خاک هاي آلوده و آب هاي زيرزميني به کار روند ؛ همچنين نانوذرات آهن سبب اکسيد شدن و درهم شکستگي ترکيبات آلوده کننده مي شود و آنها را به ترکيبات کربني با درجه سميت بسيار پايين تبديل مي کند .ارسنيک از آلاينده هاي بسيار سمي است که به طور طبيعي با پساب هاي انساني سبب آلودگي آب مي شود .مصرف اين ماده سبب افزايش شيوع سرطان مثانه و روده مي شود .آمار مسموميت با ارسنيک در سطح جهان بسيار زياد است و در بسياري از کشورهاي درحال توسعه که بيش از 10 تا20 درصد جمعيت آنها به مسموميت ارسنيک مبتلا شده اند ، چنين اتفاقي يک فاجعه بهداشتي به شمار مي آيد . بيشتر آلايندگي هاي ناشي از ارسنيک در کشورهاي جهان سوم گزارش شده است و به همين دليل اين کشورها بشدت نيازمند فناوري هاي نوين هستند تا به کمک آن بتوان آلاينده هاي فلزي سنگين مانند ارسنيک را از آب آشاميدني حذف کرد . در روش هاي جديد از نانوبلورهاي مغناطيسي به عنوان هسته اصلي سيستم هاي تصفيه آب استفاده مي شود سطوح معدني آهني نه تنها تمايل شديدي به جذب ارسنيک دارند. بلکه با انتخاب اندازه متناسب مي توان براحتي اين ذرات مغناطيسي را که به کمک روش هاي جداسازي مغناطيسي از آب جداکرد. درحقيقت نانوذرات درجذب ارسنيک همانندتوده آهني عمل مي کنند. درواقع نه تنها ظرفيت جذب ارسنيک در نانوذرات بالاتر است بلکه به محض قرار گرفتن ارسنيک در کنار نانوذرات، جداسازي آن از اين ذرات بسختي انجام خواهد شد. با توجه به نتايج به دست آمده از بررسي ها و تحقيقات انجام شده در اين زمينه ميتوان گفت نانوذرات مغناطيسي ، جاذب هاي بسيار خوبي براي آلاينده ارسنيک بويژه در آب هاي اسيدي هستند وخاصيت جذبي غير قابل بازگشت اين ذرات ، مخزن مناسبي براي جمع آوري آلاينده ها فراهم مي کند .

تصفيه فاضلاب

محققان به دنبال توسعه روش منحصر به فردي براي تصفيه فاضلاب هستند که بدون استفاده از مواد شيميايي گران قيمت ، کيفيت آب را در مقايسه با روش هايي که در حال حاضر مورد استفاده قرار مي گيرند ، به ميزان قابل توجهي افزايش خواهد داد . آخرين مرحله تصفيه آب ، حذف موجودات زنده بسيار ريز است در حال حاضر از کلر به عنوان ماده ضدعفوني کننده استفاده مي شود . اما در اين صورت حتي پس از تصفيه نيز ترکيبات ارگانيک زيادي در آب وجود خواهد داشت . کلر موجودات زنده ريز را از آب حذف مي کند . اما با آلاينده هاي ارگانيک واکنش مي دهد و محصولات جانبي تجزيه ناپذير و سمي توليد مي کند که نمي توان آنها را از آب حذف کرد. انتقال اين مواد به محيط زيست و استفاده از آنها در کشاورزي وصنايع ديگر ميتواند مشکلات بهداشتي خطرناکي ايجاد کند .
تصفيه فاضلاب به کمک نانو کاتاليزور نوري مي تواند جايگزين سومين مرحله تصفيه يعني ضدعفوني با کلر شود تا موجودات زنده و ترکيبات آلي را به طور همزمان حذف و فاضلاب را به يک منبع آب مناسب تبديل کند . به طور طبيعي موجودات زنده ريز ، ترکيبات ارگانيک بزرگ را به ذرات کوچک تري تبديل مي کنند. اما از آنجاييکه اين ترکيبات از نظر زيستي تجزيه ناپذيرند براي تجزيه آنها بايد از نوع انرژي استفاده کنيم . اين انرژي از اشعه فرابنفش نور خورشيد تامين شده و به همراه کاتاليزورهاي نوري مورد استفاده قرا رمي گيرد . انرژي آزاده شده از واکنش سلول کاتاليزور نوري مي تواند موجودات زنده ريز را از ميان برده و ترکيبات تجزيه ناپذير را تجزيه کند . اين فرآيند به دليل امکان استفاده مجدد از کاتاليزورهاي نوري از نظر اقتصادي مقرون به صرفه است. ذرات کاتاليزوري يا بصورت همگن در محلول پراکنده مي شوند يا به صورت ساختارهاي غشايي رسوب داده شده هستندکه تجزيه شيميايي آلاينده ها را امکان پذير مي کنند . با توجه به کاربردها و قابليت هاي فناوري نانو در صنعت آب و فاضلاب بسياري از شرکت ها از اين فناوري در تصفيه آب و فاضلاب استفاده مي کنند وبه همين دليل امروزه استفاده از محصولات و توليدات بر پايه فناوري نانو افزايش يافته است . اين محصولات اغلب شامل نانو فيلترها وانواع حسگرهايي است که به منظور تشخيص مواد و ذرات موجود در آب مورد استفاده قرار مي گيرند.

تصفيه پساب هاي صنعتي

پساب هاي صنعتي صنايع شوينده ، حاوي اکسيژن بيوشيميايي و مواد فعال شيميايي است . که بايد در فرآيندهاي تصفيه از آب جدا شوند . يکي از ديگر موادي که در پساب هاي صنعتي يافت مي شود مواد نامحلول روغني است . حضور اين مواد فرآيند تصفيه آب را با مشکل مواجه مي کند .يکي از روش هاي اقتصادي براي تصفيه اين مواد ، استفاده از سيستم هاي ترکيبي حاوي ميکروفيلترها و نانو فيلترهاست . در اين سيستم براي حذف ذرات معلق مانند روغن ها و گريس ها از ميکروفيلترها و براي حذف پاک کننده ها از نانو فيلترها استفاده مي شود .

منبع: روزنامه جام جم

کریمی که جهان پاینده دارد               تواند حجتی را زنده دارد

 

دانلود پروژه و کارآموزی و کارافرینی

پنج شنبه 12 بهمن 1391  7:28 PM
تشکرات از این پست
mohamadaminsh
mohamadaminsh
کاربر طلایی1
تاریخ عضویت : دی 1389 
تعداد پست ها : 25772
محل سکونت : خوزستان

پاسخ به:فناوری نانو



افزايش كيفيت فرايند تصفيه آب با نانوغشاها چندلايه‌اي محققان دانشگاه علم و صنعت، موفق به ساخت نانوغشاهاي چندلايه‌اي تيتانيايي شدند كه استفاده از اين نانوغشاها ، راندمان و كيفيت فرايند تصفيه آبها و پساب‌هاي صنعتي را افزايش مي‌دهد.
به گزارش فارس، علي عالم مجري اين طرح گفت: ساخت نانوغشاهاي چندلايه‌اي تيتانيايي به‌منظور تصفيه آب را به‌عنوان هدف اين پژوهش ذكر كرد و گفت: با بكارگيري همزمان فرايندهاي فيلتراسيون فيزيكي و فتوكاتاليستي در ساخت نانوغشا‌هاي تيتانيايي توانستيم راندمان و كيفيت آب تصفيه شده را افزايش داده و نياز صنايع مرتبط با تصفيه آب‌ و پساب‌ها را برطرف كنيم.
عالم افزود: غشا يك سد نيمه‌تراوا است كه به يك يا چند جزء، از مخلوط‌هاي گازي يا مايع اجازه عبور مي‌دهد. به‌دليل افزايش بهاي انرژي مصرفي در چند دهه گذشته، تمايل به فرآيندهاي جداسازي غشايي در مقايسه با انواع سنتي و مرسوم آن به‌طور روز افزوني افزايش يافته و امروزه غشاهاي سراميكي به‌دليل پايداري حرارتي، شيميايي و مكانيكي و همچنين طول عمر بالا، از اهميت بيشتري نسبت به انواع ديگر برخوردارند.
عالم و همكارانش براي ساخت نانوغشا، ابتدا زيرپايه آلومينايي را به روش پرس تك محور تهيه كرده، سپس به‌كمك روش سل- ژل و بكارگيري هر دو روش سل- ژل كلوئيدي و پليمري، لايه‌نشاني تيتانيا را بر روي زيرپايه انجام داده‌اند. پس از ساخت غشا، روي نمونه‌ها، آزمايش‌هاي مختلفي انجام داده و توانسته‌اند غشاي نانوساختار و چند لايه‌اي تيتانياي عاري از ترك، روي زيرپايه آلومينا را بسازند و ساختار فازي، سطح مخصوص و اندازه كريستاليت لايه‌ها را بهينه كنند. همچنين آزمايش فوتوكاتاليستي را نيز با استفاده از نانوغشا، انجام داده تا كاربرد آن، به‌عنوان يك ابزار تصفيه و گندزدايي بيشتر نمود يابد و در پايان با افزودن نقره، پس از 9 ساعت تابش اشعه فرابنفش، متيل اورنج را به ميزان 50.4 درصد تجزيه كرده‌اند.
جزئيات اين پژوهش كه به‌عنوان بخشي از پايان‌نامه كارشناسي ارشد علي عالم و با راهنمايي حسين سرپولكي در دانشگاه علم و صنعت انجام شده، در مجله Ceramics International (جلد 35، صفحات 1843-1837، سال 2009) منتشر شده است.

کریمی که جهان پاینده دارد               تواند حجتی را زنده دارد

 

دانلود پروژه و کارآموزی و کارافرینی

پنج شنبه 12 بهمن 1391  7:28 PM
تشکرات از این پست
mohamadaminsh
mohamadaminsh
کاربر طلایی1
تاریخ عضویت : دی 1389 
تعداد پست ها : 25772
محل سکونت : خوزستان

پاسخ به:فناوری نانو




معرفی و کاربرد نانوحفره‌ها

1.مقدمه

نانوحفره‌ها یا مواد نانومتخلخل؛ درارای حفراتی کوچک‌تر از 100 نانومتر می‌باشند و کاربرد ویژه‌ای در فیلتراسیون در سطح اتمی و مولکولی دارند. این مواد منافذی تو در تو دارند و منافذشان یک الگوی تکرار انتقالی در فضای سه بعدی دارد و نیاز به هیچ نظم و قاعده‌ی خاصی در آرایش منافذ نیست تا ماده‌ای را نانوحفره بنامیم.
جامدات نانومتخلخل می‌توانند ترکیبات گوناگونی نظیر کربن، سیلیکون، سیلیکات‌ها، پلیمرها، سرامیک‌ها، فلزات و ترکیبات آلی-‌ فلزی داشته باشند. بسیاری از مواد متخلخل از نظر ترمودینامیکی پایدار نیستند و به محض این‌که بر انرژی جنبشی مرزها غلبه شود، از بین می‌روند. به عنوان مثال، سیلیکات متخلخل، ماده‌ای نیمه‌پایدار است که با افزایش دما و رسیدن به نقطه‌ی ذوب، ذرات اولیه آن در شبکه ذوب می‌شوند. در این مرحله، جدایش فلزات اتفاق می‌افتد و یک فاز سیلیکاتی نانومتخلخل ایجاد می‌شود. کنترل انرژی فصل مشترک و وضعیت نیمه‌پایدار حفرات نانومقیاس در هنگام ایجاد مواد نانومتخلخل از اهمیت خاصی برخوردار است.

2. طبقه‌بندی نانوحفره‌ها

مواد نانوحفره‌ای را می‌توان بر اساس دو معیار اصلی دسته‌بندی کرد:

الف) طبقه‌بندی به وسیله اندازه منافذ:

1. موادی با حفره‌های ریز ، با اندازه حفره‌های 0-2 نانومتر
2. موادی با حفره‌های متوسط ، با اندازه حفره‌های 2-40 نانومتر
3. موادی با حفره‌های درشت ، با اندازه حفره‌های بزرگ‌تر از 50 نانومتر

ب) طبقه‌بندی بر اساس شبکه مواد:

یکی از مهم‌ترین اهداف در زمینه نانوحفره‌ها؛ دست یافتن به ترکیبی شیمیایی با یک دسته منافذ در ساختار می‌باشد و این امر موجب می‌شود که مواد به دو دسته‌ی معدنی و آلی (مانند پلیمرها) تقسیم شوند.

3. خواص و کاربردها

اصلی‌ترین کاربرد نانوحفره‌ها، سبک‌سازی مواد معدنی است به گونه‌ای که پایداری این ترکیبات شیمیایی را حفظ کرده و افزایش نیز دهد. به عنوان مثال، آئروژل‌ها نانوحفره‌هایی فوق‌العاده سبک هستند و می‌توانند تا 100 برابر وزن خودشان را به راحتی تحمل کنند.
مساحت سطحی یک جامد، پس از نانومتخلخل شدن افزایش می‌یابد و این امر سبب بهبود خواص کاتالیروزی، جذبی و حذب سطحی آن می‌گردد. مساحت سطحی جامدات نانومتخلخل اغلب در حد چند صد مترمربع بر گرم می‌باشد. یک نمونه از این مواد زئولیت‌ها می‌باشند. زئولیت‌ها مواد معدنی با حفراتی در مقیاس نانو می‌باشند و ده‌ها سال به عنوان کاتالیزور مورد استفاده قرار می‌گرفته‌اند. خواص جذبی و جذب سطحی این مواد معرف قابلیت آن‌ها در رفع مشکلات زیست‌محیطی است (مانند حذف فلزات سنگین نظیر جیوه و آرسنیک).
با توجه به جذب سطحی بالای این مواد، می‌توان از آن‌ها به عنوان سرندهای مولکولی نیز استفاده کرد. در این صورت این مواد با واکنش‌های سطحی، برخی از مولکول‌ها را جدا می‌کنند. این مواد به دلیل سطح آزاد بالایی که دارند می‌توانند در واکنش‌های کاتالیستی نیز نقش مهمی را داشته باشند.

4. روش های تولید

بهترین روش تولید تمام انواع نانوحفره‌ها، قالب‌بندی است. به این ترتیب که یک ترکیب آلی (و گاهی اوقات معدنی) به عنوان نگهدارنده عمل می‌کند که در مراحل بعدی به صورت یک حفره در مواد نانومتخلخل درمی‌آید. قالب‌بندی، امکان کنترل توزیع اندازه و گاهی شکل منافذ را ممکن می‌سازد.
از روش سل-ژل نیز می‌توان در ساخت مواد مبتنی بر ژل سود جست، مانند آئروژل‌ها. آئروژل‌ها از انتشار یک گاز در یک ژل، به جامدی بسیار سبک (گاهی فقط چهار برابر سنگین‌تر از هوا) تبدیل می‌شود. روش‌های مروسم لیتوگرافی و تلفیق لیتوگرافی نرم با حکاکی نیز، می‌تواند نانوحفره ایجاد نماید. به عنوان مثال، روش پرتو یونی به خوبی حفره‌های بزرگ و کوچک تولید می‌کند.
روش دیگر، کنترل اندازه حفره‌ها در غشاها می‌باشد که در اواخر سال 2000 پدید آمد. در این روش، پرتو ماوراء بنفش مولکول‌ها را در لایه نازکی از سیلیکات خودآرا شده با ساختار متناوب، در هم می‌شکند. با قرار گرفتن محصول حاصل در معرض نور، جامد شدن سیلیکا مطابق الگوی متناوب رخ می‌دهد. تغییر تابش نور به نجو بسیار منطقی اندازه حفره‌ها را تغییر می‌دهد.

تبیان

کریمی که جهان پاینده دارد               تواند حجتی را زنده دارد

 

دانلود پروژه و کارآموزی و کارافرینی

پنج شنبه 12 بهمن 1391  7:28 PM
تشکرات از این پست
mohamadaminsh
mohamadaminsh
کاربر طلایی1
تاریخ عضویت : دی 1389 
تعداد پست ها : 25772
محل سکونت : خوزستان

پاسخ به:فناوری نانو


استفاده از نانولوله‌ها در سلول‌هاي خورشيدي جديد

گفتگو با پروفسور پاول مك اين از دانشگاه كورنل

ردپاي نانولوله‌هاي كربني را بتدريج در هر جايي مي‌بينيم. از بدنه نسل جديد فضاپيماها و سيستم‌هاي فوق مدرن حمل‌ونقل هوايي و زيردريايي گرفته تا سيستم‌هاي نوين محاسباتي، استفاده از نانولوله‌هاي كربني تحول گسترده‌اي در فناوري‌هاي رايج ايجاد كرده است. استفاده از نانولوله‌هاي كربني در طراحي و ساخت نسل جديد صفحات خورشيدي را مي‌توان به جرا‡ت يكي از جاه‌طلبانه‌ترين تلاش‌هاي علمي بشر در سال‌هاي اخير دانست كه بتدريج به واقعيت تبديل مي‌شود. بتازگي گروهي از محققان در دانشگاه كورنل و با توجه به نواقص موجود در فناوري فعلي توليد صفحات خورشيدي تلاش گسترده‌اي را براي استفاده از نانولوله‌هاي كربني در ساختار صفحات خورشيدي آغاز كرده‌اند، به اين اميد كه راندمان توليد انرژي الكتريكي در آنها به طرز قابل توجهي افزايش پيدا كند. پروفسور پاول مك اين كه ازجمله دانشمندان برجسته علوم فيزيك در آمريكا به شمار مي‌آيد در صدر اين تلاش قرار دارد. وي در گفتگوي اخير خود با سيب به بررسي چگونگي استفاده از فناوري نانو در توليد نسل جديد صفحات خورشيدي و مزاياي آن پرداخته است.

در حال حاضر سيليكون تنها ماده‌اي است كه از آن براي ساخت صفحات خورشيدي استفاده مي‌شود، اما به نظر مي‌رسد استفاده از اين ماده با موانع جدي همراه است. مشكل اصلي استفاده از سيليكون چيست؟

سيليكون ماده ارزشمندي است كه در طيف گسترده‌اي از صنايع جنبه كاربردي پيدا كرده است. اما همانطور كه گفتيد استفاده از اين ماده همواره با مشكلات و انتقاداتي همراه بوده است كه از آن جمله مي‌توان به‌گرانقيمت بودن آن اشاره كرد اما زماني كه صحبت از استفاده از اين ماده در صنايع ساخت صفحات خورشيدي مي‌شود، نواقص اين ماده بيش از هر زمان ديگري نمايان مي‌شود. بررسي‌ها نشان مي‌دهند كه با استفاده از سيليكون راندمان جذب پرتوهاي خورشيدي و توليد انرژي پاك الكتريسيته از آن چندان مطلوب نخواهد بود اما استفاده از نانولوله‌هاي كربني اين مشكل را برطرف كرده است.

و اين مشكل چگونه برطرف شده است؟

دقت كنيد كه ما فناوري نانو را كه تاكنون در عرصه‌هاي گوناگوني گسترش يافته است وارد عرصه‌اي كرده‌ايم كه مي‌تواند تأثير خيره‌كننده‌اي بر وضعيت مصرف انرژي در جهان داشته باشد. ما با استفاده از اين فناوري سلول خورشيدي توليد كرده‌ايم كه البته هنوز در مراحل ابتدايي خود قرار دارد اما مي‌توان به آن به عنوان شروعي اميدواركننده براي آينده و دستيابي به فناوري ساخت نسل جديدي از سلول‌هاي خورشيدي با راندمان كاري بالاتر نگاه كرد. ما نام ديود نوري را روي آن گذاشته‌ايم.

مبناي كار شما در اين فناوري چه چيزي بوده است؟ به عبارت ديگر به سراغ چه ماده‌اي رفته‌ايد؟

اين سلول خورشيدي دربرگيرنده نانولوله كربني تك جداره‌اي است كه از جنس گرافن بوده و در مقايسه با ساير سلول‌هاي خورشيدي موجود از مزاياي قابل توجهي برخوردار است. ما در اين فناوري با ابعاد بسيار كوچكي سروكار داريم، ابعادي در حدود مولكول.DNA ما در اين پروژه از تلاش‌هاي قبلي دانشمندان در توليد ساختار ترانزيستوري الهام گرفته‌ايم كه با استفاده از نانولوله‌هاي كربني ارائه شده است.

چگونه به قابليت بالاي نانولوله‌هاي كربني در جذب انرژي نور پي برده‌ايد؟

ما براي اين كار به سراغ پرتوهاي ليزري رفتيم و با تاباندن آنها بر روي اين نانولوله متوجه شديم كه اين ماده قابليت خيره‌كننده‌اي در جذب انرژي فوتون‌هاي نوري دارد كه اين خود ارتباط كاملا مستقيمي با توليد حجم بالاتري از جريان الكتريكي دارد.

به نظر مي‌رسد ايده جديد شما به ايجاد تحولي بزرگ در صنايع مختلف تبديل خواهد شد. چه برنامه‌اي براي توسعه آن داريد؟

صحبت كردن از استفاده تجاري از چنين فناوري هنوز خيلي زود است با اين حال نسبت به آينده خيلي خوشبين شده‌ايم. اگر نگاهي دقيق به فناوري‌هاي مرتبط با نانو داشته باشيد متوجه مي‌شويد كه بسياري از اين فناوري‌ها به رغم آن‌كه سال‌ها از معرفي‌شدنشان مي‌گذرد، هنوز در مراحل آزمايشگاهي باقي مانده‌اند. بدون ترديد توسعه فناوري همچون صفحات خورشيدي ساخته شده از نانولوله‌هاي كربني نيازمند توسعه ساير فناوري‌هاي مرتبط است و البته قبول كنيد كه هنوز در مراحل بسيار ابتدايي اين فرآيند قرار داريم.

يكي از مهم‌ترين موانع جدي در مسير ساخت و توسعه استفاده از سلول‌هاي خورشيدي، خنك نگاه داشتن آنهاست. در اين خصوص چه برنامه‌اي براي فناوري جديدي كه ارائه كرده‌ايد، داريد؟

نكته اصلي دقيقا همين جاست كه در صفحات خورشيدي از اين دست تقريبا گرماي زائدي توليد نمي‌شود كه براي خنك‌كردن سيستم مجبور باشيم از سيستم‌هاي خنك‌كننده استفاده كنيم. اين خود يك امتياز قابل توجه محسوب مي‌شود كه نتيجه آن صرفه‌جويي قابل توجه در مصرف و هدر رفتن انرژي است.

مزيت اصلي فناوري نويني كه ارائه كرده‌ايد در مقايسه با سلول‌هاي خورشيدي موجود در چيست؟

مطالعات ما نشان داده‌اند كه در صفحات خورشيدي كه با استفاده از نانولوله‌هاي كربني توليد مي‌شوند، حجم بيشتري از جريان الكتريكي توليد مي‌شود. اما اكنون اين پرسش مطرح مي‌شود كه چگونه؟ اين فرآيند كمي پيچيده است اما به زبان ساده مي‌توان گفت كه در نانولوله‌هاي كربني الكترون‌ها در جريان هستند و اين امكان را دارند كه الكترون‌هاي بيشتري را توليد كنند كه البته اين همه صرفا به واسطه انرژي بيشتري است كه از پرتوهاي خورشيدي دريافت مي‌شود.

چه موارد كاربردي را براي اين نوع سلول‌هاي خورشيدي جديد متصور شده‌ايد؟

استفاده از اين نوع سلول‌هاي خورشيدي هيچ محدوديتي را شامل نمي‌شود و جالب اين است كه برخلاف سلول‌هاي خورشيدي فعلي كه به دليل برخي محدوديت‌ها در برخي نقاط قابل استفاده نيستند، مي‌توان از آنها در طيف گسترده‌اي از موارد نظير ماشين حساب‌هاي حساس خورشيدي نيز استفاده كرد.

در اين پروژه با چه محققان، دانشگاه‌ها و مراكز تحقيقاتي در همكاري نزديك بوده‌ايد؟

اين يك تلاش بين‌المللي و همه‌جانبه بوده است كه مزاياي آن نيز براي همه خواهد بود. در اين پروژه محققاني از دانشگاه آلبرتا و ميشيگان نيز حضور داشته‌اند. البته محققاني كه در اين پروژه حضور داشته‌اند در زمينه‌هاي مختلفي ازجمله الكترونيك و مهندسي مواد تخصص داشته‌اند.

آينده اين فناوري را چگونه مي‌بينيد؟

با توجه به توسعه خيره‌كننده طيف گسترده‌اي از فناوري‌ها، چاره‌اي جز استفاده از ايده‌هايي همچون سلول‌هاي خورشيدي توليد شده با استفاده از فناوري نانو نداريم. البته اين تنها بخشي از يك تلاش بزرگ و همه‌گير جهاني است.

پروفسور مك اين در يك نگاه‌

پروفسور مك اين در سال 1963 در اكلاهماي آمريكا چشم به جهان گشود. وي كه به عنوان يك فيزيكدان برجسته شناخته مي‌شود مدرك كارشناسي ارشد خود را در رشته فيزيك مهندسي در سال 1985 از دانشگاه اكلاهما اخذ كرد. در سال 1991 مدرك دكتري خود را در رشته فيزيك كاربردي از دانشگاه يل كسب كرده و با حضور در دانشگاه MIT مقطع پسا دكتري را سپري كرد. همچنين از سال 2001 ميلادي به اين سو در دانشگاه كورنل و به عنوان استاد علوم فيزيك مشغول به فعاليت است. از وي به عنوان يكي از سرشناس‌ترين صاحب‌نظران در زمينه نانولوله‌هاي كربني ياد مي‌شود. پروفسور مك اين با مراكز تحقيقاتي فيزيك آمريكا ازجمله اداره تحقيقات دريايي و جامعه فيزيك اين كشور نيز همكاري نزديكي دارد.

کریمی که جهان پاینده دارد               تواند حجتی را زنده دارد

 

دانلود پروژه و کارآموزی و کارافرینی

پنج شنبه 12 بهمن 1391  7:29 PM
تشکرات از این پست
mohamadaminsh
mohamadaminsh
کاربر طلایی1
تاریخ عضویت : دی 1389 
تعداد پست ها : 25772
محل سکونت : خوزستان

پاسخ به:فناوری نانو



اهميت سطح در دنیای نانو

قسمت دوم

در مقاله‌ی قبلی آموختیم که عوامل مختلفی در تعیین خواص و رفتار مواد نقش دارند. از این عوامل به عدد اتمی، عدد جرمی، آرایش الکترونی، ساختار بلوری و شرایط محیطی اشاره نمودیم. علاوه بر این عوامل، موارد دیگری نیز وجود دارند که به مقدار سطح ماده بستگی زیادی دارند. اکنون به ادامه‌ی این بحث می‌پردازیم.
سطح در فناوری نانو اهمیت بسیار بالایی دارد و همه‌جا از اثر سطح یا نسبت سطح به حجم صحبت می‌شود. در این مقاله، ابتدا در قالب مثال‌هایی اهمیت سطح را بیان می‌کنیم و تا حدودی تاثیر مقدار سطح را بر خواص ماده نشان می‌دهیم.
همان‌طور که می‌دانید، واکنش‌های شیمیایی در محلی اتفاق می‌افتند که ماده با محیط اطراف در تماس است. این محل همان سطح ماده است. واکنش از این منطقه شروع شده و سپس تحت شرایطی به عمق نفوذ می‌کند. برای بررسی بیشتر، اکسید شدن آلومینیوم را در نظر بگیرید. یک قطعه‌ی آلومینیومی سطحی کدر دارد که در صورت سمباده زدن آن، لایه‌های زیرین که بسیار شفاف هستند، پدیدار می‌شوند. این لایه‌های بسیار شفاف، همان آلومینیوم می‌باشند. اما این سطح براق به سرعت به سطحی کدر و مات تبدیل می‌شود. بررسی‌ها نشان داده است که، این لایه‌ی بسیار نازک و کدر، ترکیبی از اکسیژن و آلومینیوم است. آلومینا یا اکسید آلومینیوم (Al2O3) یک ماده‌ی سرامیکی بسیار سخت است که به شکل یک لایه‌ی پیوسته، روی سطح آلومینیوم را می‌پوشاند. این لایه از تماس لایه‌های زیرین (که از آلومینیوم هستند) با هوای اطراف جلوگیری می‌کند. بنابراین، واکنش اکسایش آلومینیوم ادامه پیدا نمی‌کند و بقیه‌ی ماده از اکسید شدن حفظ می‌گردد.
پرسش 4: طبق مطالب بیان شده، با تشکیل لایه‌ی اکسید روی ِ آلومینیوم، این ماده از نظر شیمیایی غیرفعال شده، و واکنش متوقف می‌شود. به نظر شما این پدیده دارای چه مزیت‌ها و مضراتی است؟
اکسید شدن آهن با اکسید شدن آلومینیوم تفاوت دارد. اگر دقت کرده باشید، زنگ آهن، ماده‌ای است قرمز رنگ که به راحتی می‌شکند و می‌ریزد. این ماده به راحتی از روی آهن جدا می‌شود و بنابراین، اکسیژن به قسمت‌های داخلی و به زیر لایه‌ی اکسیدی نفوذ کرده و واکنش اکسایش ادامه میابد. به گونه‌ای که ادامه‌ی روند این واکنش منجر به تخریب کامل قسمتی از قطعه‌ی فولادی شده و در نهایت، موجب انهدام آن می‌شود.
بنابراین، اگر بخواهیم به دنبال ادامه دادن یک واکنش باشیم، باید راهی برای نفوذ به درون آن ماده بیابیم. یک راه، انتقال مواد از درون حجم ماده به سطح آن است. برای این کار (دسترسی به قسمت‌های داخلی حجم ماده) می‌توانیم مسیری را درون ماده تعبیه کنیم. این کار را می‌توان با ایجاد حفراتی که به هم متصل هستند و تا سطح ماده ادامه دارند انجام دهیم (شکل 1). به این مواد که ساختاری اسفنج مانند دارند، مواد متخلخل یا فوم می‌گوییم. در طبیعت نیز می‌توان مواد متخلخل را به وفور مشاهده کرد. زئولیت‌ها موادی از این دسته هستند. از مواد متخلخل مصنوعی نیز می‌توان به فوم‌های فلزی اشاره نمود که امروزه کاربردهای بسیاری در صنایع دارند. از مواد متخلخل می‌توان برای کاتالیز واکنش‌های شیمیایی، فیلترهای مایعات و فیلترهای هوا استفاده نمود. بنابراین، هرچه اتم‌های بیشتری در سطح باشند، واکنش‌های شیمیایی با سهولت بیشتری رخ می‌دهند. این رویداد برخی موارد مفید، و در برخی موارد مضر است.
پرسش 5: آیا می‌توانید کاربردهای واکنش‌های شیمیایی مواد را نام ببرید؟ چه مواقعی نیاز داریم تا از واکنش‌های شیمیایی مواد جلوگیری کنیم؟
یک راه دیگر، کوچک‌تر کردن اندازه‌ی مواد واکنش‌دهنده است. برای بیان این موضوع، توضیحات را در قالب یک مثال ادامه می‌دهیم. ممکن است مطالبی را در رابطه با سوخت‌های جامد شنیده باشید. سوخت‌های جامد مانند پودر آلومینیوم در برخی کاربردهای خاص مورد استفاده قرار می‌گیرند. یکی از این کاربردها، استفاده به عنوان سوخت موشک است. همان‌گونه که قبلاً نیز گفته شد، آلومینیوم واکنش‌پذیری بالایی دارد و به سرعت اکسید می‌شود. پودرهای ریز آلومینیوم بر اثر واکنش با اکسیژن، به شدت آتش می‌گیرند و گرمای زیادی آزاد می‌کنند.
سوخت‌های جامد یا Solid Fuel به انواع مواد جامدی گفته می‌شود که به عنوان سوخت استفاده می‌شوند، و در اثر اشتعال، گرما و انرژی آزاد می‌کنند. مانند: زغال چوب و زغال سنگ. یکی از کاربردهای این نوع سوخت، استفاده از آن به عنوان سوخت موشک می‌باشد.
پرسش 6: به نظر شما اندازه‌ی پودرهای آلومینیوم چه تاثیری بر میزان انرژی آزاد شده و در نتیجه بازده سوخت دارد؟
برای پاسخ به این پرسش، شکل 2 را در نظر بگیرید. در این شکل فرض کرده‌ایم که پودر آلومینیوم به شکل کره است. در صورتی که این ذره‌ی پودر در معرض اکسیژن قرار بگیرید و واکنش دهد، یک لایه از اکسید آلومینیوم روی آن قرار می‌گیرد. با توجه به آنچه در مورد اکسید آلومینیوم گفته شد، این لایه‌ی تشکیل شده، از ادامه‌ی واکنش اکسایش جلوگیری می‌کند و مقدار زیادی از قسمت‌های داخلی این ذره‌ی پودری، از واکنش در امان می‌ماند. اما در صورتی‌که اندازه‌ی این ذره کمتر باشد، مقدار بسیار کمتری از آن دست نخورده باقی می‌ماند. بنابراین، مقدار بیشتری از سوخت جامد مصرف شده و بازده بیشتر می‌شود.
علاوه بر این مثال، اندازه‌ی ذرات مورد استفاده در صنایع شیمیایی (اندازه‌ی ذرات کاتالیست)، ریخته‌گری (اندازه‌ی افزودنی‌ها به مذاب) و صنایع کامپوزیت (اندازه‌ی ذرات تقویت کننده) از اهمیت بالایی برخوردار است.
به طور خلاصه، برای در دسترس قرار دادن مقدار بیشتری از یک ماده، یا باید آن را به شکل متخلخل داشته باشیم، و یا اندازه‌ی ذرات آن را کوچک‌تر کنیم. در هر دو روی‌کرد، در واقع؛ مقدار بیشتری از ماده روی سطح قرار می‌گیرد، و یا می‌توان گفت که نسبت سطح به حجم افزایش یافته است. اهمیت سطح تنها در واکنش‌های شیمیایی مطرح نیست، بلکه برهم‌کنش‌های فیزیکی و مکانیکی ماده با محیط نیز از طریق سطح انجام می‌گیرد. از این موارد می‌توان به پدیده‌های اصطکاک و انتقال حرارت اشاره نمود. بنابراین، تغییر مقدار سطح ماده می‌تواند بر این پدیده‌ها تاثیر بگذارد.
در پایان این مقاله و برای شروع مقاله‌ی بعدی، چند سوال مهم را مطرح می‌کنیم.
پرسش 7: آیا همیشه با کوچکتر شدن اندازه‌ی ماده، خواص آن تغییر می‌کند؟ این خواص شامل چه مواردی هستند؟
همان‌گونه که می‌دانید، در ابعاد نانو، خواص نوری، الکتریکی، مغناطیسی و شیمیایی مواد به شدت تغییر می‌کند. برای مثال، نقطه‌ی ذوب ذرات 50 نانومتری طلا با نقطه‌ی ذوب ذرات 10 نانومتری طلا بسیار متفاوت است. رنگ نانوذرات طلا نیز با یکدیگر متفاوت است. اما اگر شمش‌های بزرگ طلا را به قسمت‌های چند میلی متری تقسیم کنیم، نقطه‌ی ذوب‌شان تغییر نمی‌کند و هم‌چنان به رنگ زرد (طلایی) دیده می‌شوند. چگونه این واقعیت را توجیه می‌کنید؟ آیا ابعاد نانومتر، محدوده‌ی خاصی است که در آن اتفاقات ویژه‌ای می‌افتد؟

/www.nanoclub.ir/

کریمی که جهان پاینده دارد               تواند حجتی را زنده دارد

 

دانلود پروژه و کارآموزی و کارافرینی

پنج شنبه 12 بهمن 1391  7:29 PM
تشکرات از این پست
mohamadaminsh
mohamadaminsh
کاربر طلایی1
تاریخ عضویت : دی 1389 
تعداد پست ها : 25772
محل سکونت : خوزستان

پاسخ به:فناوری نانو



نگاهى به كاربردهاى نانوتكنولوژى در علوم زيستى

سوار بر ذرات نانو

نانوتكنولوژى، فناورى جديدى است كه در ارتباط با كاربرد ذرات ريز در حد نانومتر قرار مى گيرد. به نظر مى رسد كه فناورى نانو در آينده در زمينه هاى گوناگونى مانند مواد، تجهيزات و سيستم ها توسعه چشمگيرى پيدا كند. در بين اين زمينه ها نانومواد، هم در عرصه توليد دانش و هم در جنبه هاى عرضه تجارتى از رشد و گستردگى بالاترى برخوردار شده است. در يك دهه قبل ذرات نانو به علت جذابيتى كه در مطالعه خواص فيزيكى آنها وجود داشت بيشتر مورد توجه قرار گرفت. لذا به اين دليل اين مواد در حال حاضر به صورت تجارتى در دسترس قرار گرفته اند. ارگانيسم هاى حياتى از سلول هايى تشكيل شده اند كه به طور كلى داراى ديواره هايى به ضخامت ۱۰ ميكرومتر هستند. اما اجزاى اين سلول ها بسيار ريزتر و در حد نانومتر هستند. برخى از پروتئين هاى درون سلول تقريباً ۵ نانومتر هستند، يعنى در حد كوچكترين ذرات ناتو ساخت دست بشر هستند. از اين مقايسه ابعاد چنين مى توان برداشت كرد كه برخى پروتئين ها را مى توان تحت كنترل قرار داد و يا به بيانى از اين ذرات به عنوان پروب هاى سلولى براى تحريك پروتئين ها استفاده نمود. در واقع كشف حقايق مربوط به فرآيندهاى بيولوژيك درون سلول ها در ابعاد نانو از مهم ترين علل تمايل و توجه به فناورى نانو و تحقيق و توسعه در اين زمينه است. قطع نظر از تمايلى كه به مطالعه خواص فيزيكى ذرات نانو وجود دارد، توجه به اثرات مغناطيسى و خواص نورى مربوط به ذرات نانو از مهم ترين زمينه هاى كاربرد اين ذرات به حساب مى آيند. از طريق ذرات هيبريدشده نانو مى توان به ساختارهاى نوين با خواص جديد الكترونيكى، نورى _ الكترونيكى و ذرات هوشمند دست يافت. در اينجا در ابتدا به سابقه و كاربرد قبلى ذرات نانو در علوم زيستى و پزشكى مى پردازيم و سپس سعى مى نماييم تا تلاش هايى كه در اين زمينه در دست است عرضه شود و سپس به امكان رسيدن فرآورده هاى نانو به بازار مصرف خواهيم پرداخت. • كاربردهاى ذرات نانو در اينجا به برخى از كاربردهاى اين نوع ذرات در علوم زيستى و پزشكى اشاره مى شود. برخى از مهمترين آنها عبارتند از: كاربرد در داروسازى و ژن درمانى، تهيه ماركرهاى فلورسانس بيولوژيك، رديابى بيولوژيك عوامل بيمارى زا، رديابى پروتئين ها، پروب نمودن ساختار DNA، مهندسى بافت، نابود كردن تومورها از طريق گرمايش سلولى (hyper thermia)، جداسازى و خالص نمودن مولكول هاى زيستى و سلول ها، ازدياد كنتراست (زمينه سازى) در تصويربردارى پزشكى (MRI) و نهايتاً مطالعه سرعت رفتارهاى سلولى و Phago-kinetic. همان طور كه اشاره شد توليد ذرات نانو در ابعاد پروتئين هاى سلولى سبب شده است تا از آنها به عنوان ماركرهاى زيستى استفاده شود. البته اندازه ذره براى موادى كه مى بايست در سيستم هاى بيولوژيك وارد و تاثيرگذار باشند شرط اول مطالعه است. لذا براى تماس موثر و تداخل با هدف هاى بيولوژيك و يا پوشش دادن مولكول هاى زيستى به منظور طراحى آنها به عنوان هدف هاى غيرآلى _ زيستى مى بايستى ذرات نانو را به طرز موثرى تهيه كرد تا قابليت برقرار نمودن اين نوع تداخلات و يا چسبيده شدن را داشته باشد. مثال اين نوع فعاليت ها در پوشش دادن آنتى بادى ها، بيوپليمرهاى شبيه كلاژن و يا پوشش دادن به ذرات ريزى كه مانند بيومواد عمل نمايند است. در عرصه فعال نمودن خواص نورى ذرات بيولوژيك، ذرات نانو مى بايستى كه توانمندى تغيير خواص نورى بيومواد را آنچنان داشته باشند تا بتوانند آنها را از نظر خواص فلورسانسى قابل رديابى نمايند. در هر صورت ذرات نانو مى توانند در تشخيص شكل سلول ها، رديابى فرآيند هاى سيگنالينگ، عمل آنتى ژن ها و به عنوان عوامل قابل اتصال (linkers) در علوم سلولى به كار برده شوند، غالباً نانو- ذرات به صورت يك هسته تشكيل دهنده از مواد بيولوژيك كه سطح آن با مواد ساده و يا تركيبات غير آلى و بيوپليمرى پوشش داده شود تشكيل شده است. همچنين شكل ذرات نانو بيولوژيك مى تواند به صورت يك ريز ذره پوشش داده شده با يك غشا و يا لايه از مواد موثر وجود داشته باشد. ذرات به صورت كروى، استوانه اى، ديسك مانند و يا فرم هاى ديگرى مى تواند باشد. در مواردى كه ميزان نفوذ به درون لايه و غشاى خاصى مطرح باشد، سايز ذره و يا نوع توزيع ذرات نيز مى بايستى متناسب با جنبه كاربردى آن باشد. زمانى كه كنترل اندازه ذرات توسط روش هاى دقيقى مانند روش quantum- sized effects مى بايستى اندازه گيرى شود، سايز ذرات و نوع توزيع اندازه ذرات آن بسيار مهم خواهد بود. به طورى كه كنترل معدل اندازه ذرات مناسب و توزيع بسيار نزديك به هم سايز ذرات سبب نشر نور فلورسانس در يك باند باريك و بسيار قوى و حاصل جذب طول موج هاى مختلف در پهنه وسيع ترى از انواع طول موج ها مى شود. اين نوع توزيع مناسب و يكنواختى اندازه ذرات در تشخيص بيوماركرها از طريق ايجاد رنگ هاى مشخص كمك مى كند. در هر صورت هسته ذرات نانو مى تواند از لايه هاى مختلفى تشكيل شود و لايه هاى داراى خواص مغناطيسى و Luminescent كه هر دو در رديابى و تشخيص ذرات نانو كاربرد دارند به كار برده شوند. غالباً هسته ذرات نانو توسط پوشش هاى تك لايه اى از مواد غير فعالى مانند سيليكا پوشش داده مى شوند. مواد آلى مختلفى را مى توان روى اين سطوح سيليكايى سوار نمود، همچنين مى توان با نشاندن ساير مواد زيست سازگار بر روى اين سطوح آنها را به منظور خاص اصلاح ساختارى نمود. در هر صورت نشاندن و سوار كردن ساير Linker ها در اين موارد متداول است. در حال حاضر گروه هاى مختلفى از مواد وجود دارند كه بر روى سطح نانو- ذرات قابل سوار شدن هستند. آنتى بادى ها، مواد فلوروژنيك و ساير تركيبات زيست سازگار از اين قبيل هستند. • نوآورى هاى جديد «مهندسى بافت» جدار طبيعى استخوان ها داراى ضخامتى به ميزان ۱۰۰ نامتر است. اگر سطح يك ايمپلنت استخوان مصنوعى صاف و يكنواخت باشد، بدن آن را بعد از پيوند پس مى زند و نمى پذيرد. لذا سعى مى شود تا سطح نرم و صاف ايمپلنت استخوان هاى مصنوعى طورى همگون با فضاى مجوف بافت طبيعى تهيه شود. اين نوع طراحى سبب تماس كمتر بافت ايمپلنت با بافت اصلى بدن مى گردد و لذا احتمال نپذيرفتن پيوند كاهش مى يابد. در جراحى ها و استفاده از پروتز زانو و لگن نشان داده شده است كه با ايجاد ناهموارى هايى در ابعاد نانو در سطح ايمپلنت امكان ايجاد حالت تحريك استئوبلاست ها و يا پس زدن پروتز كاملاً كاهش مى يابد. استئوبلاست ها سلول هاى استخوان مسئول رشد و نمو استخوان ها هستند. اين اثرات با به كار بردن مواد بيوپليمرى، سراميكى و مواد فلزى مورد تجربه واقع شده است. در آزمايشگاه توانسته اند بيش از ۹۰ درصد سلول هاى استخوانى انسان را با مواد فلزى نانو همراه نمايند. اما در عمل نمى توان بيش از ۵۰ درصد سلول ها را با مواد نانو همراه نمود. اين يافته ها سبب خواهد شد تا در اعمال جراحى تعويض زانو و استخوان لگن از ايمپلنت هاى با طول اثر بيشتر و ماندگارى بالاتر استفاده شود. تيتانيوم يك ماده كاملاً شناخته شده اى است كه در ارتوپدى و دندانپزشكى كاربرد دارد. اين ماده به علت سبك بودن با قابليت مقاومت بالايى كه در برابر شكستگى دارد براى سوار شدن روى استخوان ها مناسب است. اما متاسفانه معايبى نيز دارد. در عوض آپاتيت ماده اى است كه كاملاً بيواكتيو است و به استخوان نيز به راحتى متصل مى شود. لذا در گذشته تلاش ها و تكنيك هاى زيادى براى پوشش دادن تيتانيوم با آپاتيت انجام شده است. البته اين نوع مواد حاصل از پوشش دادن ها نيز خود از عدم مزيت هايى مانند عدم ضخامت يكنواخت پوشش آن و عدم مقاومت در برابر شكستگى ها برخوردار است. ساختار متخلخل و مجوف پروتز ها براى انتقال مواد لازم براى رشد سلول ها ضرورى به نظر مى رسد، استخوان به طور طبيعى يك ماده نانوكامپوزيتى است كه از كريستال هاى هيدروكسى آپاتيت درون يك ماتريكس آلى و سرشار از كلاژن تشكيل شده است. خوشبختانه جنس استخوان طورى است كه در واقع محكم و داراى خواص پلاستيك است و اين امر سبب مى شود تا در صدمات مكانيكى قابليت ترميم را داشته باشد. هنوز مكانيسم دقيق عملكرد نانومواد كه دقيقاً شبيه استخوان عمل نمايند به طور مشخص روشن نيست. نوعى مواد تلفيق شده ذرات سراميكى و پلى متيل متاآكريلات به صورت كوپليمر ارائه شده است. به طورى كه توانسته اند از اين ماده يك حالت رفتارى ويسكوالاستيك شبيه دندان هاى طبيعى انسان را ببينند. با استفاده از اين ماده توانسته اند مقاومت روكش هاى دندانى را در برابر ساييدگى و گرما افزايش دهند. • درمان سرطان روش درمان فتوديناميك سرطان بر مبناى نابود كردن سلول هاى سرطانى و بر مبناى توليد اكسيژن هاى اتمى كه سيتوتوكسيك است انجام مى شود، سلول هاى سرطانى رنگ هاى حاوى مواد توليد كننده اكسيژن هاى اتمى را نسبت به سلول هاى سالم بيشتر برداشت مى كنند. لذا سلول هاى سرطانى فقط در معرض تابش اشعه ليزر قرار خواهند گرفت. اما مقادير باقى مانده از رنگ هاى درمانى توليد كننده اتم هاى اكسيژن فعال متاسفانه به سطح پوست و چشم ها رسيده و سبب مى شوند تا بيماران نسبت به در معرض قرار گرفتن در مقابل نور حساسيت نشان بدهند. به منظور جلوگيرى از اين عارضه ناخواسته مولكول هاى رنگ اصلاح شده و با خواص آب گريزى بيشتر به درون نانوذرات متخلخل قرار داده مى شوند. به اين ترتيب رنگ درون ذرات نانو باقى مى ماند و مانع از دسترس قرار گرفتن در سطح سلول ها مى شود. اما خاصيت توليد اتم اكسيژن آن ثابت باقى مى ماند. لذا با تابش اشعه ليزر اتم هاى اكسيژن توليد شده شروع به خروج از محفظه هاى يك نانومترى ذرات نانو مى نمايند. • سيستم كد رنگ هاى مجزا براى تشخيص هاى بيولوژيك با پيشرفت هايى كه در زمينه ژنوميكس و پروتئوميكس صورت گرفته هر روز به تعداد ژن هايى كه كشف مى شوند افزوده مى شود. لذا نياز به سرعت در تشخيص افزايش مى يابد. زمانى كه تعداد آزمايشات بر مبناى عوامل تاثير گذار متجاوز از هزاران فاكتور باشد، سرعت تشخيص مى بايستى از فناورى هاى پيشرفته داراى سرعت عمل زياد برخوردار باشد. به كمك سيستم باركد ذرات محلول پليمرى و بر مبناى روش هاى سه بعدى نورسنجى شايد بتوان با كمك عوامل مشخص برخى از رديابى ها را انجام داد. به كمك نقطه هايى كوانتومى (quantum dots) مربوط به تركيبات نيمه هادى ها اخيراً رديابى جديدى به جاى رنگ سنجى انجام شده كه اصطلاحاً به نام كاربرد برچسب هاى بيولوژيك boi-tagging ناميده مى شود. اين تكنيك با يك گام بالاتر تلفيقى از اندازه ذرات متفاوت و نقاط كوانتومى داراى فلورسانس مشخص را با هم در نانوذرات پليمرى به خدمت گرفته است. در اين روش شش نوع رنگ و با ۱۰ شدت متفاوت به دست مى آيد و از مقايسه آنها با نقاط كوانتومى شاهد مى توان به خواص مواد پى برد. • كاربرد مولكول هاى زيستى در سلو ل ها اخيراً نانوذرات مغناطيسى كاربرد هاى جالبى در زمينه جداسازى سلول ها و تشخيص آنها يافته اند. اكثر ذرات مغناطيسى نانو كه به اين منظور تهيه شده اند كروى شكل هستند. در مقابل ذرات مستطيل شكل را نيز مى توان به كمك نانوذرات و آلومينا تهيه كرد. با درك بيشتر از شيمى سطوح در مورد اتصال برقرار كردن ذرات فلزى مى توان آنها را بر روى عوامل مختلف مستقر كرد. به طور مثال پورفيرين ها را مى توان به كمك اتصال دهنده هاى داراى گروه تيول و يا كربوكسى با فلزاتى مانند نيكل و يا طلا متصل كرد. به اين ترتيب مى توان رشته سيم هاى مغناطيسى حاوى نانو ذرات كه خواص فلورسانس داشته باشند را تهيه كرد. به علت كوچك بودن سطح اين نانو ذرات قدرت ميدان مغناطيسى آنها بسيار بالا خواهد بود. بنابراين با اعمال ميدان مغناطيسى بسيار ضعيفى آنها را مى توان به حركت درآورد. به طورى كه نشان داده شده است جهت و حركت اين رشته هاى مغناطيسى نانو را مى توان به كمك كمترين ميدان مغناطيسى تغيير داد. با اين فرايند شايد بتوان شكل سلول ها را تغيير داد.
• رديابى پروتئين ها پروتئين ها بخش مهمى از ساختار سلول هستند و دريافت نحوه عملكرد آنها براى بشر بسيار مهم است. نانوذرات طلا به طور گسترده اى براى شناسايى تداخل پروتئين- پروتئين مهم است. روش هاى موجود براى دنبال كردن ساختارهاى پروتئين زياد نيستند. روش اسپكتروسكوپى رامان براى رديابى پروتئين ها يك روش متداول است. با به كارگيرى هر دو روش با هم شايد بتوان رديابى پروتئين ها را با دقت بيشترى انجام داد. در حال حاضر با فناورى نانوذراتى از طلا به ابعاد ۱۳ نانومتر و با روكش اوليگونوكلئوتيدى تهيه شده اند كه قابليت رديابى را دارند. اگر اين ذرات در مجاورت نقره و هيدروكينون قرار گيرند قابليت آن را خواهند يافت تا در رديابى توسط ميكروسكوپ رامان مشاهده شوند. قطع نظر از قدرت تشخيص برخى از مولكول هاى كوچك چنانچه اين ذرات با آنتى بادى هاى اختصاصى نيز همراه باشند قابليت اتصال به پروتئين هاى اختصاصى را خواهند يافت. • كشفيات قابل دسترس و آينده برخى از شركت ها يافته هاى خود را در زمينه نانوفناورى در دسترس ديگران قرار داده اند. اغلب اين شركت ها نانوفناورى را به منظور دارورسانى نوين براى داروها استفاده مى كنند. برخى از آنها نانوكريستال هاى نيمه هادى را براى تهيه برچسب هاى بيومولكولى استفاده كرده و برخى احياناً براى تهيه متصل شونده هاى بيولوژيك به همراه نانوذرات طلا براى مشخص كردن اجزاى سلولى تلاش كرده اند. تعدادى از شركت ها نيز در تهيه بيومواد نانوسراميكى براى مهندسى بافت و يا تهيه پروتزهاى ارتوپدى فعاليت مى كنند. اغلب شركت هاى دارويى در زمينه دارورسانى نوين و تهيه فرمولاسيون هايى از نانوذرات تلاش كرده اند. نقره كلوئيدى به طور گسترده در تهيه عوامل ضدميكروبى در فرمولاسيون ها همراه پوشش ها استفاده شده است. همچنين ذرات تيتان نيز كه توسط تابش خودبه خودى آن و يا تاثير تابش ماوراى بنفش فعال شوند به منظور استفاده از اثر ضدميكروبى آنها در فيلترها استفاده شده است. علاوه بر اين از خواص سطوح فعال سراميك هاى نانو و يا فلزاتى از قبيل پلاتين براى از بين بردن توكسين ها و يا مواد آلى كشنده ديگر استفاده شده است. در حال حاضر نقطه عطف توجه فناورى نانو در علوم زيستى بيشتر در زمينه دارورسانى است. همچنين توجه خاصى به همراه كردن داروها با برخى از نانوپروب ها به منظور دارورسانى ضدسرطان عليه تومورها و يا نابودسازى آنها وجود داشته است. به نظر مى رسد كه تلاش هاى آتى براى هدايت از راه دور فعال سازى نانو مواد توسط برخى از روش هاى سيگنالينگ براى تهيه نانو وسيله ها جهت گيرى شده باشد. *دانشيار دانشكده داروسازى دانشگاه تهران شرق آنلاين

کانون دانش

کریمی که جهان پاینده دارد               تواند حجتی را زنده دارد

 

دانلود پروژه و کارآموزی و کارافرینی

پنج شنبه 12 بهمن 1391  7:30 PM
تشکرات از این پست
mohamadaminsh
mohamadaminsh
کاربر طلایی1
تاریخ عضویت : دی 1389 
تعداد پست ها : 25772
محل سکونت : خوزستان

پاسخ به:فناوری نانو



همه چيز درباره نانو تكنولوژي در دو دهه اخير، پيشرفتهاي تكنولوژي وسايل و مواد با ابعاد بسيار كوچك به دست آمده است و به سوي تحولي فوق العاده كه تمدن بشر را تا پايان قرن دگرگون خواهد كرد ، پيش مي رود . براي احساس اندازه هاي مادون ريز ، قطر موي سر انسان را كه يك دهم ميليمتر است در نظر بگيريد ، يك نانومتر صدهزار برابر كوچكتراست 9- 10متر . تكنولوژي و مهندسي در قرن پيش رو با وسايل ، اندازه گيريها و توليداتي سروكار خواهد داشت كه چنين ابعاد مادون ريزي دارند . درحال حاضر پروسه هاي در ابعاد چند مولكول قابل طراحي و كنترل است . همچنين خواص مكانيكي ، شيميايي ، الكتريكي ، مغناطيسي ، نوري و… مواد در لايه ها در حدود ابعاد نانومتر قابل درك و تحليل و سنجش است . تكنولوژي درقرن گذشته در هرچه ريزتر كردن دانه هاي بزرگتر پيشرفت چشمگيري داشت ، بطوريكه به مزاح گفته شد كه ديگر كشف ذرات ريز اتمي ((Sub-Atomic)) نه تنها جايزه نوبل ندارد ، بلكه به آن جريمه هم تعلق مي گيرد ! تكنولوژي نو درقرن حاضر مسير عكس را طي مي كند . يعني مواد مادون ريز را بايد تركيب كرد تا دانه هاي بزرگتر كارآمد به وجود آ ورد .
درست همان روشي كه در طبيعت براي توليد كردن حاكم است . مجموعه هاي طبيعي ، تركيبي از دانه هاي مادون ريز قابل تشخيص با خواص مشابه و يا متفاوت با اندازه هاي در حدود نانو است .
اثر تحقيقات در فناوريهاي مادون ريز هم اكنون در درمان بيماريها و يا دست يافتن به مواد جديد به ظهور رسيده است . موارد بسياري در مرحله تحقيقات كاربردي و آزمايشي است .اكنون ساخت رايانه هاي بسيار كوچكتر و ميليونها بار سريعتر در دستور كار شركتهاي تحقيقاتي قرار دارد .
در بياني كوتاه نانوتكنولوژي يك فرايند توليد مولكولي است . همانطور كه طبيعت مجموعه ها را بطور خودكار مولكول به مولكول ساخته و روي هم مونتاژ كرده است ، ما هم بايد براي توليد محصولات جديد ، با اين اعتقاد كه هرچه در طبيعت توليد شده قابل توليد در آزمايشگاه نيز هست ، نظير طبيعت راهي پيدا كنيم . البته منظور اين نيست كه چند هسته از مواد راپيدا كنيم و با رساندن انرژي و خوراك پس از چند سال يك نيروگاه از آن بسازيم كه شهري را برق دهد . بلكه براي تركيب و تكامل خودكار توليدات مادون ريزكه به نحوي در مجموعه هاي بزرگتر مصرف دارد ، راهي بيابيم . در اندازه هاي مادون ريز ، روشها و ابزارآلات متعارف فيزيكي مانند تراشيدن و خم كردن و سوراخ كردن و…جوابگو تيستند .
براي ساختن ماشينهاي ملكولي بايد روش پروسه هاي طبيعي را دنبال كرد .
با تهيه نقشه هاي ساختاري بدن يعني آرايش ژنها و DNA كه ژنم ناميده شده است و به موازات آن دست يافتن به تكنولوژي مادون ريز ، در دراز مدت تحولات بسياري در هستي ايجاد خواهد شد . توليد مواد جديد ، گياهان ، جانداران و حتي انسان متحول خواهد شد . اشكالات ساختاري موجودات در طبيعت رفع مي شود و با تركيب و خواص اورگانيك گياهان و جانوران ، موجودات جديدي با خواص فوق العاده و شخصيتهاي متفاوت بوجود خواهد آمد .آينده علوم و مهندسي كه چندين گرايشي Multi- Disciplinary )) است ، به طرف توليد ماشينهاي مولكولي سوق داده خواهد شد تا در نهايت بتواند مجموعه هاي كارآيي از پيوندهاي ارگانيك و سايبريك را عرضه نمايد .
هستي را به رايانه ( سخت افزار ) و برنامه ( نرم افزار ) كه دو پديده مختلف ولي ادغام شده هستند ، مي توان تشبيه كرد . سخت افزار مصداق ماده ( اغلب اتم هيدروژن ) و نرم افزار يا برنامه ، قابليت نهفته در خلقت آن است .
اتم به نظر ساده و ابتدايي هيدروژن در طي ميلياردها سال با قابليت نهفته در خود توانسته است ميليونها نوع آرايش مختلف را در هستي بوجود آورد . بشر از بوجود آوردن اساس ماده عاجز است . ولي در برنامه ريزيهاي جديد و يافتن اشكال ديگري از آنچه در طبيعت وجود دارد ، پيش خواهد رفت . طبيعت را خواهد شناخت و به اصطلاح ، قفلهاي شگفت آور آن را باز خواهد كرد . احتمالا انسان در شرايط مناسبتري از درجه حرارت و فشار كه درتشكيل طبيعي مواد مختلف از هيدروژن لازم است ، بتواند اتمهاي مورد نباز خود را توليد كند ، سيارات ديگري را در نهايت در اختيار بگيرد و بعيد نيست كه نواده هاي دوردست ما بتوانند در نيمه هاي راه ابديت در اكثر نقاط جهان هستي و كهكشانها سكني گزينند.
به احتمال زياد قبل از پايان هزاره سوم انسانها در بدن خود انواع لوازم مصنوعي و ديجيتالي راخواهند داشت. . از بيماري ، پيري ، درد ستون فقرات ، كم حافظه اي و… رنج نخواهند برد .قابليت فهم و تحليل اطلاعات در مغز آنها در مقايسه با امروز بي نهايت خواهد شد . در هزاره هاي آينده انسانهاي طبيعي مانند امروز احتمالا براي مطالعات پژوهشي نگهداري شده و به نمونه هاي آزمايشگاهي و بطور حتم قابل احترام تبديل خواهند شد و مردمان آينده از اينهمه درد و ناراحتي كه اجداد آنها در هزاره هاي قبل كشيده اند ، متعجب و متاثر خواهند بود .
اكنون جا دارد همگام با تحولات جديد در مهندسي و علوم ، دانشگاهها و مراكز تحقيقاتي بطور جدي به پژوهشهاي تكنولوژي مادون ريز مشغول شوند تا حداقل ما هم بتوانيم مرزهاي دانش روز را به نسلهاي آينده تحويل دهيم و در تشكلهاي جديد هستي سهمي داشته باشيم . باشد هرچه زودتر به خود آييم و عمق شكوهمند و معجزه آساي انديشه بشررا دريابيم و از كوتاه بيني و افكار فرسوده موروثي فاصله بگيريم . گفته شيخ اجل سعدي در آينده مصداق واقعي تري خواهد داشت :

چه انتظاري بايد از نانوتكنولوژي داشت :

اين تكنولوژي جديد توانايي آن را دارد كه تاثيري اساسي بر كشورهاي صنعتي در دهه هاي آينده بگذارد . در اينجا به برخي از نمونه هاي عملي در زمينه نانوتكنولوژي كه بر اساس تحقيقات و مشاهدات بخش خصوصي به دست آمده است ، اشاره مي شود .
انتظار مي رود كه مقياس نانومتر به يك مقياس با كارايي بالا و ويژگيهاي منحصربفرد ، طوري ساخته خواهند شد كه روش شيمي سنتي پاسخگوي اين امر نمي تواند باشد .
• نانوتكنولوژي مي تواند باعث گسترش فروش سالانه 300 ميليارد دلار براي صنعت نيمه هاديها و 900 ميليون دلار براي مدارهاي مجتمع ، طي 10 تا 15 سال آينده شود .
• نانوتكنولوژي ، مراقبتهاي بهداشتي ، طول عمر ، كيفيت و تواناييهاي جسمي بشر را افزايش خواهد داد .
• تقريبا نيمي از محصولات دارويي در 10 تا 15 سال آينده متكي به نانوتكنولوژي خواهد بود كه اين امر ، خود 180 ميليارد دلار نقدينگي را به گردش درخواهد آورد .
• كاتاليستهاي نانوساختاري در صنايع پتروشيمي داراي كاربردهاي فراواني هستند كه پيش بيني شده است اين دانش ، سالانه 100 ميليارد دلار را طي 10 تا 15 سال آينده تحت تاثير قرار دهد .
• نانوتكنولوژي موجب توسعه محصولات كشاورزي براي يك جمعيت عظيم خواهد شد و راههاي اقتصادي تري را براي تصويه و نمك زدايي آب و بهينه سازي راههاي استفاده از منابع انرژيهاي تجديد پذير همچون انرژي خورشيدي ارائه نمايد . بطور مثال استفاده از يك نوع انباره جريان گذرا با الكترودهاي نانولوله كربني كه اخيرا آزمايش گرديد ، نشان داد كه اين روش 10 بار كمتر از روش اسمز معكوس ، آب دريا را نمك زدايي مي كند .
• انتظار مي رود كه نانوتكنولوژي نياز بشر را به مواد كمياب كمتر كرده و با كاستن آلاينده ها ، محيط زيستي سالمتر را فراهم كند . براي مثال مطالعات نشان مي دهد در طي 10 تا 15 سال آينده ، روشنايي حاصل از پيشرفت نانوتكنولوژي ،مصرف جهاني انرژي را تا 10 درصد كاهش داده ، باعث صرفه جويي سالانه 100 ميليارد دلار و همچنين كاهش آلودگي هوا به ميزان 200 ميليون تن كربن شود.
در چند سال گذشته بازارچند ميليارد دلاري برپايه نانوتكنولوژي كسترش يافته اند . براي مثال در ايالات متحده ، IBM براي هد ديسكهاي سخت ، يك سري حسگرهاي مغناطيسي را ابداع كرده است .
Eastern Kodak و 3M تكنولوژي ساخت فيلمهاي نازك نانو ساختاري را به وجود آورده اند . شركت Mobil كاتاليستهاي نانو ساختاري را براي دستگاههاي شيميايي توليد كرده است و شركت Merck ، داروهاي نانوذره اي را عرضه كرده است . تويوتا در ژاپن مواد پليمري تقويت شده نانوذره اي را براي خودروها و Samsung Electronics در كره ، در حال كار بر روي سطح صفحات نمايش توسط نانولوله هاي كربني هستند . بشر درست در ابتداي مسير قرار دارد و فقط چندين محصول تجاري از نانوساختارهاي يك بعدي بهره مي گيرند ( نانو ذرات ، نانو لوله ها ، نانو لايه و سوپر لاستيكها ) . نظزيات جديد و روشهاي مقرون به صرفه توليد نانوساختارهاي دو و سه بعدي از موضوعات مورد بررسي آينده مي باشند.
نانو تكنولوژي يا كاربرد فناوري در مقياس يك ميليونيم متر، جهان حيرت انگيزي را پيش روي دانشمندان قرار داده است كه در تاريخ بشريت نظيري براي آن نمي توان يافت. پيشرفتهاي پرشتابي كه در اين عرصه بوقوع مي پيوندد، پيام مهمي را با خود به همراه آورده است: بشر در آستانه دستيابي به توانايي هاي بي بديلي براي تغيير محيط پيرامون خويش قرار گرفته است و جهان و جامعه اي كه در آينده اي نه چندان دور به مدد اين فناوري جديد پديدار خواهد شد، تفاوت هايي بنيادين با جهان مالوف آدمي در گذشته خواهد داشت.
به گزارش ايرنا نانو تكنولوژي نظير هر فناوري ديگري چونان يك تيغ دولبه است كه مي توان از آن در مسير خير و صلاح و يا نابودي و فنا استفاده به عمل آورد. گام اول در راه بهره گيري از اين فناوري شناخت دقيق تر خصوصيات آن و آشنايي با قابليت هاي بالقوه اي است كه در خود جاي داده است. در خصوص نانو تكنولوژي يك نكته را مي توان به روشني و بدون ابهام مورد تاكيد قرار داد: اين فناوري جديد هنوز، حتي براي متخصصان، شناخته شده نيست و همين امر هاله ابهامي را كه آن را در برگرفته ضخيمتر مي كند و راه را براي گمانزني هاي متنوع هموار مي سازد.
كساني بر اين باورند كه اين فناوري نظير هيولايي فرانكشتين در داستان مري شلي و يا همانند جعبه پاندورا در اسطوره هاي يونان باستان، مرگ و نابودي براي ابناي بشر درپي دارد. در مقابل گروهي نيز معتقدند كه به مدد توانايي هاي حاصل از اين فناوري مي توان عالم را گلستان كرد.
در حال حاضر 450 شركت تحقيقاتي- تجاري در سراسر جهان و 270 دانشگاه در اروپا، آمريكا و ژاپن با بودجه اي كه در مجموع به 4 ميليارد دلار بالغ مي شود سرگرم انجام تحقيقات در عرصه نانو تكنولوژي هستند. در اين قلمرو اتمها و ذرات رفتاري غيرمتعارف از خود به نمايش مي گذارند و از آنجا كه كل طبيعت از همين ذرات تشكيل شده، شناخت نحوه عمل آنها، به يك معنا شناخت بهتر نحوه شكل گيري عالم است. به اين ترتيب دانشمنداني كه در اين قلمرو به كاوش مشغولند، به يك اعتبار با ذهن و ضمير خالق هستي و نقشه شگفت انگيز او در خلقت عالم آشنايي پيدا مي كنند، اما از آنجا كه دانايي توانايي به همراه مي آورد، شناسايي رازهاي هستي مي تواند توان فوق العاده اي را در اختيار كاشفان اين رازها قرار دهد. تحقيق در قلمرو نانو تكنولوژي از اواخر دهه 1950 آغاز شد و در دهه 1990 نخستين نتايج چشمگير از رهگذر اين تحقيقات عايد گرديد.
از جمله آنكه يك گروه از محققان شركت آي بي ام موفق شدند35 اتم گزنون را بر روي يك صفحه از جنس نيكل جاي دهند و با كمك اين تك اتمها نامي را بر روي صفحه نيكلي درج كنند. محققان ديگر به بررسي درباره ساختارهاي ريز موجود در طبيعت نظير تار عنكبوت ها و رشته هاي ابريشم پرداختند تا بتوانند موادي نازك تر و مقاوم تر توليد كنند. در اين ميان ساخت يك نوع مولكول جديد كربن موسوم به باكمينسترفولرين يا كربن- 60 راه را براي پژوهشهاي بعدي هموارتر كرد. محققان با كمك اين مولكول كه خواص حيرت انگيز آن هنوز در درست بررسي است، لوله هاي موئينه اي در مقياس نانو ساخته اند كه مي تواند براي ايجاد ساختارهاي مختلف در تراز يك ميليونيم متر مورد استفاده قرار گيرد. بررسي هايي كه در ابعاد نانو بر روي مواد مختلف صورت گرفته و خواص تازه اي را آشكار كرده است. به عنوان مثال ذرات سيليكن در اين ابعاد از خود نور ساطع مي كنند و لايه هاي فولاد در اين مقياس از استحكام بيشتري در قياس با صفحات بزرگتر اين فلز برخوردارند.
برخي شركتها از هم اكنون بهره برداري از برخي يافته هاي نانوتكنولوژي را آغاز كرده اند. به عنوان نمونه شركت آرايشي اورال از مواد نانو در محصولات آرايشي خود استفاده مي كند تا بر ميزان تاثير آنها بيفزايد. ساخت ديودهاي نوري با استفاده از مواد نانو موجب مي شود تا 80درصد در هزينه برق صرفه جويي شود. توپهاي تنيسي كه با كربن 60 ساخته شده و روانه بازار گرديده سبكتر و مستحكمتر از توپهاي عادي است. شركتهاي ديگر با استفاده از مواد نانو پارچه هايي توليد كرده اند كه با يك بار تكاندن آنها مي توان حالت اتوي اوليه را به آنها بازگرداند و همه چين و چروكهايشان را زايل كرد. با همين يك بار تكان همه گردوخاكي كه به اين پارچه ها جذب شده اند نيز پاك مي شوند. نوارهاي زخم بندي هوشمندي با اين مواد درست شده كه به محض مشاهده نخستين علائم عفونت در مقياس مولكولي، پزشكان را مطلع مي سازند.
از همين نوع مواد همچنين ليوانهايي توليد شده كه قابليت خود- تميزكردن دارند. لنزها و عدسيهاي عينك ساخته شده از جنس مواد نانو ضد خش هستند و يك گروه از محققان تا آنجا پيش رفته اند كه درصددند با مواد نانو پوششهاي مناسبي توليد كنند كه سلولهاي حاوي ويروسهاي خطرناك نظير ويروس ايدز را در خود مي پوشاند و مانع خروج آنها مي شود. مهمترين نكته درباره موقعيت كنوني فناوري نانو آن است كه اكنون دانشمندان اين توانايي را پيدا كرده اند كه در تراز تك اتمها به بهره گيري از آنها بپردازند و اين توانايي بالقوه مي تواند زمينه ساز بسياري از تحولات بعدي شود. يك گروه از برجسته ترين محققان در حوزه نانوتكنولوژي بر اين اعتقادند كه مي توان بدون آسيب رساندن به سلولهاي حياتي، در درون آنها به كاوش و تحقيق پرداخت. شيوه هاي كنوني براي بررسي سلولها بسيار خام و ابتدايي است و دانشمندان براي شناخت آنچه كه در درون سلول اتفاق مي افتد ناگزيرند سلولها را از هم بشكافند و در اين حال بسياري از اطلاعات مهم مربوط به سيالهاي درون سلول يا ارگانلهاي موجود در آن از بين مي رود.
يك گروه از محققان كه در گروهي موسوم به اتحاد سيستمهاي زيستي گرد آمده اند، سرگرم تكميل ابزارهاي ظريفي هستند كه هدف آن بررسي اوضاع و احوال درون سلول در زمان واقعي و بدون آسيب رساندن به اجزاي دروني سلول يا مداخله در فعاليت بخشهاي داخلي آن است. ابزاري كه اين گروه مشغول ساخت آن هستند رديف هايي از لوله ها يا سيمهاي بسيار ظريفند كه قادرند وظايف مختلفي را به انجام برسانند از جمله آنكه هزاران پروتئيني را كه به وسيله سلولها ترشح مي شود شناسايي كند. گروههاي ديگر از محققان نيز به نوبه خود سرگرم توليد دستگاهها و ابزارهاي ديگر براي انجام مقاصد علمي ديگر هستند.
به عنوان نمونه يك گروه از محققان سرگرم تكميل فيبرهاي نوري در ابعاد نانو هستند كه قادر خواهند بود مولكولهاي مورد نظر را شناسايي كنند. گروهي نيز دستگاهي را دردست ساخت دارند كه با استفاده از ذرات طلا مي تواند پروتئين هاي معيني را فعال سازد يا از كار بيندازد. به اعتقاد پژوهشگران براي آنكه بتوان از سلولها در حين فعاليت واقعي آنها اطلاعات مناسب به دست آورد، بايد شيوه تنظيم آزمايشها را مورد تجديدنظر اساسي قرار داد. سلولها در فعاليت طبيعي خود امور مختلفي را به انجام مي رسانند: از جمله انتقال اطلاعات و علائم و داده ها ميان خود، ردوبدل كردن مواد غذايي و بالاخره سوخت و ساز و اعمال حياتي. يك گروه از روش تازه اي موسوم به الگوي انتقال ابر – شبكه استفاده كرده اند كه ساخت نيمه هاديهاي نانومتري به قطر تنها 8 نانومتر را امكان پذير مي سازد. هريك از اين لوله هاي بسيار ريز بالقوه مي توانند يك پادتن خاص يا يك اوليگو نوكلئو اسيد و يا يك بخش كوچك از رشته دي ان اي بر روي خود جاي دهند.
با كمك هر تراشه مي توان 1000 آزمايش متفاوت بر روي يك سلول انجام داد. براي دستيابي به موفقيت كامل بايد بر برخي از محدوديتها غلبه شود، ازجمله آنكه درحال حاضر براي بررسي سلولها بايد آنها را در درون مايعي قرار داد كه مصنوعاً محيط زيست طبيعي سلولها را بازسازي مي كند، اما يون موجود در اين مايع مي تواند سنجنده هاي موئينه را از كار بيندازد. براي رفع مشكل، محققان سلولها را درون مايعي جاي مي دهند كه چگالي يون آن كمتر است. گروههاي ديگري از محققان نيز در تلاشند تا ابزارهاي مناسب در مقياس نانو براي بررسي جهان سلولها ابداع كنند. يكي از اين ابزارها چنانكه اشاره شد يك فيبر نوري است كه ضخامت نوك آن 40 نانومتر است و بر روي نوك نوعي پادتن جا داده شده كه قادر است خود را به مولكول مورد نظر در درون سلول متصل سازد. اين فيبر نوري با استفاده از فيبرهاي معمولي و تراش آنها ساخته شده و بر روي فيبر پوششي از نقره اندود شده تا از فرار نور جلوگيري به عمل آورد. نحوه عمل اين فيبر نوري درخور توجه است.
از آنجاكه قطر نوك اين فيبر نوري، از طول موج نوري كه براي روشن كردن سلول مورد استفاده قرار مي گيرد به مراتب بزرگتر است، فوتونهاي نور نمي توانند خود را تا انتهاي فيبر برسانند، درعوض در نزديكي نوك فيبر مجتمع مي شوند و يك ميدان نوري بوجود مي آورند كه تنها مي تواند مولكولهايي را كه در تماس با نوك فيبر قرار مي گيرند تحريك كند. به نوك اين فيبر نوري يك پادتن متصل است و محققان به اين پادتن يك مولكول فلورسان مي چسبانند و آنگاه نوك فيبر را به درون يك سلول فرو مي كنند. در درون سلول، نمونه مشابه مولكول فلورسان نوك فيبر، اين مولكول را كنار مي زند و خود جاي آن را مي گرد. به اين ترتيب نوري كه از مولكول فلورسان ساطع مي شد از بين مي رود و فضاي درون سلول تنها با نوري كه به وسيله ميدان موجود در فيبر نوري بوجود مي آيد روشن مي شود و درنتيجه محققان قادر مي شوند يك تك مولكول را در درون سلول مشاهده كنند.
مزيت بزرگ اين روش در آن است كه باعث مرگ سلول نمي شود و به دانشمندان اجازه مي دهد درون سلول را در هنگام فعاليت آن مشاهده كنند. نانو تكنولوژي همچنين به محققان امكان مي دهد كه بتوانند رويدادهاي بسيار نادر يا مولكولهاي با چگالي بسيار كم را مشاهده كنند. به عنوان مثال بلورهاي مينياتوري نيمه هاديهاي فلزي در يك فركانس خاص از خود نور ساطع مي كنند و از اين نور مي توان براي مشخص كردن مجموعه اي از مولكولهاي زيستي و الصاق برچسب براي شناسايي آنها استفاده كرد. به نوشته هفته نامه علمي نيچر چاپ انگلستان يك گروه از محققان دانشگاه ميشيگان نيز توانسته اند سنجنده خاصي را تكميل كنند كه قادر است حركت اتمهاي روي را در درون سلولها دنبال كند و به دانشمندان در تشخيص نقايص زيست عصبي مدد رساند.
از ابزارهاي در مقياس نانو همچنين مي توان براي عرضه مؤثرتر داروها در نقاط موردنظر استفاده به عمل آورد. در آزمايشي كه بتازگي به انجام رسيده نشان داده شده است كه حمله به سلولهاي سرطاني با استفاده از ذرات نانو 100برابر بازده عمل را افزايش مي دهد. محققان اميدوارند در آينده اي نه چندان دور با استفاده از نانو تكنولوژي موفق شوند امور داخلي هر سلول را تحت كنترل خود درآورند. هم اكنون گامهاي بلندي در اين زمينه برداشته شده و به عنوان نمونه دانشمندان مي توانند فعاليت پروتئينها و مولكول دي ان اي را در درون سلول كنترل كنند. به اين ترتيب نانو تكنولوژي به محققان امكان مي دهد تا اطلاعات خود را درباره سلولها يعني اصلي ترين بخش سازنده بدن جانداران به بهترين وجه كامل سازند.

منبع :alivephysics.persianblog.com
منبع دريافت مقاله : سايت آينده نگر
کانون دانش

کریمی که جهان پاینده دارد               تواند حجتی را زنده دارد

 

دانلود پروژه و کارآموزی و کارافرینی

پنج شنبه 12 بهمن 1391  7:30 PM
تشکرات از این پست
mohamadaminsh
mohamadaminsh
کاربر طلایی1
تاریخ عضویت : دی 1389 
تعداد پست ها : 25772
محل سکونت : خوزستان

پاسخ به:فناوری نانو



جهان ریاضیات در فضای نانو علوم نانو و فناوری نانو بیانگر رهگذری به سوی دنیایی جدید هستند. سفر به اعماق سرزمین اتمها و مولکولها نوید دهندة اثراث اجتماعی شگفت‌انگیزی است: در علوم بنیادین، در فناوریهای نو، در طراحی مهندسی و تولیدات، در پزشکی و سلامت و در آموزش.
پیش‌بینی‌های گسترده در حوزه کشفیات جدید، چالشها، درک مفاهیم، حتی هنوز فرم و محتوای موضوع، مه‌آلود و اسرارآمیز است. این مقاله می‌کوشد تا چالشهای دنیای ریاضیات را در مواجهه با دنیای شگفت‌انگیز نانو بررسی کند. به عبارت دیگر، ریاضیات در معماری پازل نانو چه نقشی خواهد داشت ؟
همگان بر این نکته توافق دارند که پیشرفتهای بزرگ، مستلزم تعامل میان مهندسان، ژنتیست‌ها، شیمیدانان، فیزیکدانان، داروسازان، ریاضیدانان و علوم رایانه ای ها است. شکاف میان علوم و فناوری، میان آموزش و پژوهش، میان دانشگاه و صنعت، میان صنعت و بازار بر مجموعه تأثیرگذار خواهد بود. دلایل کافی مبتنی بر فصل مشترک میان نظامهای کلاسیک و فرهنگ ها موجود است.
این انقلاب علمی و فناورانه، منحصر به فرد است. این بدین معنی است که می‌بایستی نه تنها در بعد علمی، که در سایر ابعاد، نیز زیرساختهای بنیادین با حداکثر انعطاف پذیری در برابر تغییرات را پیش‌گویی و پیش‌بینی کنیم.
دانش ریاضیات به عنوان خط مقدم جبهة علم مطرح است. ویژگی بدیهی ریاضیات در علوم نانو «محاسبات علمی» است. محاسبات علمی در فناوریی که به عنوان فناوری انقلابی مطرح شده است. محاسبات علمی در طول، تفسیر آزمایشات، تهیة پیش‌بینی در مقیاس اتمی و مولکولی بر پایة تئوری کوانتومی و تئوریهای اتمی است.
همانگونه که ریاضیات زبان علم است، محاسبات، ابزاری عمومی علم و کاتالیزوری برای تعاملات عمیق‌تر میان ریاضیات و علوم است. یک تیم محاسبات، دربارة مدلشان و اثر محاسباتشان و تطبیق‌پذیری آن با واقعیت، به بحث می‌پردازند. «‌محاسبات» رابطی میان آزمایش و تئوری است. یک تئوری و یک مدل ریاضی، پیش نیاز محاسبات است و یک آزمایش تنها اعتبار بخش هر نوع تئوری، مدل و محاسبات است.
مدلهای ریاضی، ستونهای راهگشا به سوی بنیاد علم و تئوریهای پیش بین هستند. مدلها، رابطهایی بنیادین در پروسه‌های علمی هستند و اغلب اوقات در سیستم‌های آموزشی به فاز مدلسازی و محاسبات، تأکید کافی نمی‌شود. یک مدل ریاضی بر پایة فرمولاسیون معادلات و نامعادلات اصول بنیادین استوار است و مدل درگیر با درک کامل پیچیدگیهای مسأله نظیر، جرم، اندازة حرکت و توازن انرژی است. در هر سیستم فیزیکی واقعی تقریب اجازه داده می‌شود، تا مدل را در یک قالب قابل حل عرضه کنند. اکنون می‌توان مدل را یا به صورت «تحلیلی» و یا بصورت «عددی» حل کرد. در این حالت مدلسازی ریاضی یک پروسه پیچیده است،زیرا می‌بایستی دقت و کارآیی را همزمان نشان دهد.
در علوم نانو و فناوری نانو، مدلسازی نقش محوری را بر عهده دارد، بویژه وقتی که بخواهیم عملکرد ماکروسکوپی مواد را از طریق طراحی در مقیاس اتمی و مولکولی کنترل کنیم، آن هم در شرایطی که درجات آزادی زیاد باشد. مدلسازی ریاضی یک ضرورت در این فضای مه آلود است. تفسیر داده‌های آزمایشگاهی یک ضروت حتمی است. همچنین برای هدایت، تفسیر، بهینه سازی، توجیه رفتارهای آزمایشگاهی، مدلسازی ریاضی ضرورت می‌یابد.
یک مدل مؤثر، راه رسیدن به تولیدات جدید، درک جدید رفتارشناسی، را کوتاه می‌کند و تصحیح گر هوشمندی است که از نتایج گذشته درس می‌گیرد.
مدلسازی نه تنها ویژگی منحصر به فرد ریاضیات است بلکه پلی بسوی فرهنگهای مختلف علمی است.
تئوری در هر مرحله از توسعة علم، نقش محوری دارد، ارزیابی حساسیت مدل به شرایط پروسه‌های فیزیکی ، و حصول اطمینان از اینکه معادلات و الگوریتمهای محاسباتی با شرایط کنترل آزمایشگاهی سازگارند، از چالشهای مهم است. تئوری نهایتاً بسوی تعریف نتایج و درک فیزیکی سیستم، میل خواهد کرد و اغلب اوقات ریاضیات جدیدی لازم نیست تا به منظور رسیدن به درک رفتار، ساخته شود.
عبور از تئوریهای موجود ارزشمند است و اغلب نیز اتفاق می‌افتد. زمانی مدلها، مشابه سیستم‌های شناخته شده هستند که دقت ریاضی بالایی را داشته باشند اما در جهان شگفت ‌انگیز نانو، مدلهای مختلف و جدید، چالشهای جدی را در دانش ریاضیات پدید می‌آورند. تئوریهای جدید در مقیاسهای زمانی غیر قابل پیش‌گوئی اتفاق می‌افتند و تئوریهای قدرتمند در قالبهای عمیق شکل می‌گیرند. میان‌برهای اساسی لازم است تا شبیه‌سازی صورت گیرد:
طراحی در مقیاس اتمی و مولکولی، کنترل و بهینه سازی عملکرد مواد و ابزار آلات، و کارآیی شبیه‌سازی رفتار طبیعی، از مهمترین چالشها است. این چالش‌ها نوید دهندة برهم کنشهای کامل میان حوزه‌های مختلف ریاضی خواهد بود.
آثار اجتماعی این چالش‌ها زیاد و متنوع خواهد بود.
منافع حاصل از مشغولیت ریاضیدانان فعال، توازن با چالشهای اصلی در زمینه رشد زیرساختهای ریاضیات، تغییرات در ساختار آموزش ریاضیات، از جمله آثار ورود ریاضیات به دنیای شگفت انگیز نانو خواهد بود.
جامعه ریاضی می‌بایستی اصلاح شود: تئوریهای بنیادین، ریاضیات میان رشته‌ای و ریاضیات محاسباتی و آموزش ریاضیات.
ریاضیات چه حوزه‌هایی را در بر خواهد گرفت؟ الگوریتمهای اصلی در حوزه‌های ریاضیات کاربردی و محاسباتی، علوم کامپیوتر، فیزیک آماری، نقش مرکزی و میان بر ساز را در حوزة نانو بر عهده خواهند داشت.

برای روشن شدن موضوع برخی از اثرات ریاضیات را در فرهنگ نانو بررسی می‌کنیم:

ـ روشهای انتگرال گیری سریع و چند قطبی سریع: اساسی و الزامی به منظور طراحی کدهای مدار (White, Aluru, Senturia) و انتگرال گیری به روش Ewala در کد نویسی در حوزه‌های شیمی کوانتوم و شیمی مولکولی (Darden ۱۹۹۹)
ـ روشهای« تجزیه حوزه»، مورد استفاده در شبیه‌سازی گسترش فیلم تا رسیدن به وضوح نانوئی لایه‌های پیشرو مولکولی با مکانیک سیالات پیوسته در مقیاسهای ماکروسکوپیک (Hadjiconstantinou)
ـ تسریع روشهای شبیه سازی دینامیک مولکولی (Voter ۱۹۹۷)
ـ روشهای بهبود مش‌بندی تطبیق پذیر: کلید روشهای شبیه پیوسته که ترکیب کنندة مقیاسهای ماکروئی، مزوئی، اتمی ومدلهای مکانیک کوانتوم از طریق یک ابزار محاسباتی است (Tadmor, Philips, Ortiz)
ـ روشهای پیگردی فصل مشترک: نظیر روش نشاندن مرحله‌ای Sethian, Osher که در کدهای قلم زنی و رسوب‌گیری جهت طراحی شبه رساناها مؤثرند (Adalsteinsson, Sethian) و نیز در کدگذاری به منظور رشد هم بافت ها (Caflisch)
ـ روشهای حداقل کردن انرژی هم بسته با روشهای بهینه سازی غیر خطی (المانی کلیدی برای کد کردن پروتیئن‌ها) (Pierce& Giles)
ـ روشهای کنترل (مؤثر در مدلسازی رشد لایه نازک‌ها (Caflisch))
ـ روشهای چند شبکه‌بندی که امروزه در محاسبات ساختار الکترونی و سیالات ماکرومولکولی چند مقیاسی بکار گرفته شده است.
ـ روشهای ساختار الکترونی پیشرفته ، به منظور هدایت پژوهشها به سمت ابر مولکولها (Lee & Head – Gordon)

نویسنده : شاهرخ رضایی
ستاد ویژه توسعه فناوری نانو
کانون دانش

کریمی که جهان پاینده دارد               تواند حجتی را زنده دارد

 

دانلود پروژه و کارآموزی و کارافرینی

پنج شنبه 12 بهمن 1391  7:30 PM
تشکرات از این پست
mohamadaminsh
mohamadaminsh
کاربر طلایی1
تاریخ عضویت : دی 1389 
تعداد پست ها : 25772
محل سکونت : خوزستان

پاسخ به:فناوری نانو


نانو تيوپهاي كربني و روشهاي ساخت آنها

نانو تيوپهاي (نانو تيوب) كربني:

يكي از اكتشافات بزرگ مربوط به Nanotechnology ، كشف Nanotube است .نانو تيوبها صفحاتي از اتمهاي كربن هستند كه درون قسمتي غلطك مانند حركت مي كنند ودر ظاهر شبيه توريهاي سيمي هستند كه بر روي يك سمت آنها پوششي قرار گرفته باشد. Carbon Nanotube لوله كربني تو خالي است . نانو تيوب هاي كربني از منابع كربني مانند گرافيت يا گازهاي هيدروكربني بوسيله روشهايي مانند تخليه الكتريكي ، TCVD و Laserr ablation ساخته مي شوند . اين مواد به علت داشتن خواصي مانند سطح ويژه زياد (700-1000 m2/gr) ، استحكام زياد (حدودا 50 برابر فولاد) و خصوصيات الكتريكي و الكترونيكي استثنايي موارد كاربرد زيادي از جمله استفاده به عنوان پايه كاتاليست ، تقويت مكانيكي پليمرها و كمپوزيت ها و ساخت قطعات الكترونيكي دارند .آنها 10 برابر از فولاد محكمتر ند در حاليكه وزنشان يك ششم وزن فولاد است. اين امتياز باعث شده است كه آنها اولين انتخاب براي ساختن پلها، هواپيماها وحتي سفينه هاي فضايي باشند. تنها مشكل اين است كه بزرگترين نانو تيوبي كه در آزمايشگاه ساخته مي شود تنها چند ميلينتر است. اما اين مسئله باعث شده كه درمورد ماشينهاي كوچك ، نانو تيوب ها ي كربني ايده آل باشند. يكي از مشكلاتي كه بر كيفيت ابزار MEMSتاثير منفي مي گذارد ساييدگي قسمتهاي بسيار كوچك آنهاست كه در هر ثانيه هزاران بار اتفاق مي افتد. اما در ياتاقانهاي ساخته شده از نانو تيوبها تقريبا هيچ گونه اصطحكاكي وجود ندارد.وامتيازمهم اين است كه نانو تيوبها در هر دو حالت رسانا ونارسانا وجود دارند واين ويژگي موجب استفاده آنها در وسايل مختلف الكتريكي شده است. نانو تيوبها دو نوع هستند : نانو تيوبهاي چند ديواره اي و تك ديواره اي كه به ترتيب در سال 1991 و 1993 كشف شدند. نوع چند ديواره اي از الياف گرافيتي ساخته مي شود در حالي كه نانو تيوبهاي تك ديواره اي از الياف فولرن كشيده شده تشكيل شده اند . از زمان كشف اين مواد كاربرد هاي مختلفي پيشنهاد شده است كه از آن جمله مي توان استفاده از نوع چند ديواره اي را در نوك اي . اف . ام حامل و در مورد نوع تك ديواره به منظور استفاده در وسايل الكترونيكي يا به عنوان محيط مناسب جهت ذخيره هيدروژن اشاره نمود .
نانو تيوبهاي تك ديواره از ديواره هاي استوانه اي گرافن به قطر 1 تا 2 نانومتر تشكيل شده است . نوع چند ديواره اي ,ديواره هاي ضخيم تري دارد و از چندين استوانه هم محور گرافن كه با فاصله 34 نانومتر (در حد فاصله لايه هاي گرافيت) از هم جدا شده اند ,تشكيل گرديده است . قطر خارجي نانو تيوب چند ديواره اي 2 تا 25 نانومتر و سوراخ داخلي آن در محدوده 1 تا 8 نانومتر قرار دارد و ما بين لايه هاي منفرد گرافيت هيچگونه نظم سه بعدي وجود ندارد . طول متوسط نانو تيوب مي تواند چندين ميكرون باشد .
اولين بار نانو تيوبها در سال 1991 توسط «سوميو ايجيما» و به صورت کاملا اتفاقي در هنگام مطالعه سطوح الکترودهای کربن در هنگام تخليه قوس الکتريکی کشف شد.

دامنه کاربرد:

محاسبات اوليه نشان داده اند كه نانو تيوبها بسته به هليسيتي و قطرشان مي توانند رسانا يا نيمه رسانا باشد . دو سر تيوب حالت فلزي از خود نشان مي دهند .نانو تيوب در عين استحكام بالا بسيار انعطاف پذير است .
اكثر كاربرد ها بر اساس ساختار الكترونيكي ,استحكام مكانيكي ,انعطاف پذيري و ابعاد نانو تيوب پيشنهاد شده است . كاربرد الكترونيكي بر پايه نانو تيوب تك ديواره اي است در حالي كه در مورد ساير كاربردها تفاوتي ميان نوع چند ديواره اي و تك ديواره اي وجود ندارد . كاربرد نانو تيوب به عنوان وسايل الكترونيكي كوچك مورد توجه بيشتري قرار گرفته است . به عنوان مثال نوع تك ديواره اي كه بين دو الكترود فلزي قرار داده شده , مشابه وسايل نيمه رساناي مرسوم است و عملكرد آن در حد وسايل موجود برآورد شده است (عملكرد از لحاظ سوييچينگ). نانو تيوبها مي توانند به دليل استحكام و انعطاف پذيري در ساختمان مواد به كار روند و موادي با خواص بهتر را ايجاد كنند .

مشخصات :

ساختار تو خالي نانو تيوب سبك بودن آن را به دنبال دارد . چگالي نوع چند ديواره اي 8/1 و نوع تك ديواره اي 8/0 است . استحكام ويژه آنها حداقل 100 برابر فولاد است . نانو تيوبها مقاومت خوبي در برابر مواد شيميايي داشته و از پايداري گرمايي بالاي برخوردارند . اكسايش نانو تيوب از دو سر تيوب آغاز مي شود . اين عمل باعث باز شدن تيوب خواهد شد . انتقال الكترون در نانو تيوبها منحصر به فرد است و در جهت محور شديدا رسانا هستند. رسانايي گرمايي آنها در جهت محوري نيز بالا است . نانو تيوبها از لحاظ كاتاليزوري فعال مي باشند. نانو تيوبها خاصيت مويينگي بالايي دارند و مي توانند گازها و مايعات را در خود جاي دهند . از نانو تيوبهاي چند ديواره اي به عنوان الكترود در واكنشهاي بيوالكترو شيميايي استفاده شده است . نانو تيوبها مي توانند واكنشهاي احياي اكسيژن را كاتاليز كنند. سرعت انتقال الكترون در نانو تيوب بيشتر از الكترودهاي كربني است . ذخيره هيدروژن در داخل حفره هاي نانو تيوبهاي تك ديواره اي امكان پذير خواهد بود .

روشهاي توليد نانو تيوب كربني:

در سال 1991 توسط پژوهشگر ژاپني به نام سوميو ايجيما كه متخصص ميكروسكوپ آزمايشگاه NECبود ،آزمايشي به وقوع پيوست كه تا به حال سهم به سرتئي در توسعه نانو تكنولوژي داشته است. وي كه به دستكاري وتغيير روش هاي ارائه شده توسط محققين موسسه ي فيزيك هسته اي ماكس پلانگ جهت توليد فولرين مشغول بود، دو الكترد گرافيت را به جاي اتصال در فاصله كمي از يكديگر قرار داد وبين آنها قوس الكتريكي برقرار كرد. اين آزمايش سبب شد كه وي به طور كاملا اتفاقي نانو تيوب هاي كربني را كشف كند. اهميت روز افزون اين مواد در صنعت به دليل خواص مكانيكي والكتريكي جالب ومتنوع آنها ست .پيش بيني مي شود كه اين مواد بتوانند در بسياري از ساختار هاي نانو متري آينده به كار روند. دو نوع ساختار متفاوت نانو تيوب كربن وجود دارد،كه از بقيه اشكال آن تا حدودي متمايز است:
1- نانو لوله تك جداره Single Wall
2- نانو لوله چند جداره Multi Wall
اين دو مورد وخصوصا نوع تك جداره آن صرفا به دليل سادگي توجه پژوهشگران بيشتري را به خود جلب كرده است.نانو لوله تك جداره از يك ورقه ي گرافيت پيچيده به صورت استوانه به وجود آمده كه دو سر آن به حالت كروي مسدود است.تفاوت نوع چند جداره به وجود آمده كه درون هم قرار دارند. در ميان انواع روشهاي توليد نانو تيوب كربني تك جداره ،سه روش از اهميت وارزش بالاتري بر خوردار دارند. اين روشها عبارتند از :
1- قوس الكتريكي Arc Discharge
2- رسوب گذاري بخار شيميايي :
(Chemical Vapor Deposition or CVD)
3- تبخير ليزري (Laser Vaporization)

روش قوس الكتريكي:

روش قوس الكتريكي همان روشي است كه توسط سوميو ايجميا براي اولين بار به كار برده شد،بااين وجود مقدار محصول به وجود آمده در اين روش بسيار پايين است.ولي در روش رسوب گذاري بخار شيميايي مي توان محصول بيشتري را به دست آورد.و به همين دليل پيش بيني ميشود كه در آـينده براي توليد انبوه نانو لوله ها در مقياس صنعتي به كار رود.در روش قوس الكتريكي از دو الكترد گرافيت استفاده ميشود وآنها را درفاصله كمي از يكديگر قرار مي دهند به خاطر اينكه خلوص بدست آمده در روش ايجيميا بسيار پاييين بود Journet وهمكار انش در سال 1997 به دستكاري متد بكار رفته توسط ايجما پرداختند وبا بهينه كردن پارامتر هاي توليد توانستند نانو لوله هاي تك ديواره با خلوص وراندمان بالا بدست آورند .آنها از آند گرافيتي با قطر 16 وطول 40 ميلي متر وهمچنين الكترود ديگري با قطر 16 وطول 100 ميل متر به عنوان كاتد استفاده كردند ونيز براي بدست آوردن نانو لوله Single Wall ميان اند كاتاليست Ni,Yپرگرديد. عمود بودن يا در امتداد هم قرار داشتن كاتد وآند تاثير چنداني در سنتز ندارد.
براي اجراي قوس الكتريكي بايد محيط اطراف دستگاه را ابتدا خلا كرده وسپس در فشاري پايين (معمولا بين 260 تا 360 torr) از هليوم ويا آرگون كه گازهاي بي اثر هستند پر كنيم .يكي از عوامل مهم در سنتز نانو لوله ها به روش قوس الكتريكي پايداري قوس الكتريكي اعمال شده ونيز مقدار شدت جريان وولتاژ است كه مي تواند در مقدار محصول بدست آمده موثر باشد.در صورتي كه محصول مورد نظر نانو تيوب هاي Multi Wallباشد ديگر اجباري در استفاده از كاتاليزگرها نداريم با اينكه محصول به دست آمده توسط روس قوس الكتريكي به خاطر محدود بودن وسايل آزمايش بسيار كم است، اين روش توسط بسياري از پژوهشگران اجرا مي شودف زيرا مقدارمحصول براي يك كار تحقيقي روي نانو لوله اهميت خاصي ندارد بلكه آنچه مهم است خلوص محصول وكامل بودن ساختار آن است .كه روش قوس الكتريكي تا حد زيادي اين مشكل را بر طرف ميكند واما مشكل ديگردر روش قوس الكتريكي تكنيك خلا است كه در بسياري از آزمايشگاههاي سطح پايين امكان آن وجود ندارد ونيز استفاده از هليم وآرگون كه هر دو گازهاي گراني هستند، هر چند در بعضي از روشها از گاز هيدروژن استفاده شده است ولي اين مورد تالثير چنداني نداشته ومشكل بوجود آمده ديگر امكان انفجار وخطرات جانبي هيدروژن است.
پايداري قوس الكتريكي عامل مهمي در سنتز به شمار مي آيد با اين وجود استفاده از يك منبع تغذيه ي DCميتواند تاثير خوبي در سنتز داشته باشد وآزمايشات نشان داده است هر چند اندازه ي شدت جريان نسبت به اختلاف پتانسيل بيشتر باشد شرائط بهتر است ولي رسيدن به چنين جريان هائي بسيار مشكل است.

روش Magnetic Field:

يكي از موضوعات وپارامترهاي مهم براي پژوهشگراني كه مي خواهند از نانو لوله ها استفاده كنند خلوص محصول است وهمچنين اينكه در سطح مقدار بيشتري نانو لوله قرار گرفته باشد، تا بتوانند آزمايشهاي كيفي خود را با دقت بالاتري انجام دهند. در روش قوس الكتريكي هنگاه ايجاد قوس در اطراف كاتد وآند به دليل اختلاف پتانسيل وجريان، دما تا حد قابل توجهي بالا مي رود ،اين مقدار به اندازه اي است كه گرافيت (در حالت كلي كربن ) رو ي آند بخار شده وسپس روي كاتد مي نشيند.از آنجا كه در اطراف كاتد وآند گاز قرار دارد در نتيجه اين افزايش دما بر گاز نيز اثر گذاشته ودماي آنرا افزايش مي دهد . ودر نتيجه در اطراف محيطي نه به شكل گاز بلكه به شكل حالت چهارم ماده پلاسما به وجود آمده است .
دليل ليمكه پلاسما را حالت جديدي از ماده مي ناميم اين است كه از تركيب ين هاي مثبت ومنفي اتم هاي خنثي بوجود آمده است .با افزايش دما تعداد اتمهاي خنثي كاهش يافته در حقيقت ميزان بارهاي آزاد دما تعداد اتمهاي خنثي كاهش يافته در حقيقت ميزان بارهاي آزاد افزايش مي يابد .اما نكته مهم در پلاسما اثرات ميدان مغناطيسي بر آنهاست .به وسيله ميدان مغناطيسي مي توان پلاسما را در يك منطقه محصور كرد.اين جلوگيري از برخورد پلاسما با ديواره طرف كه در راكتور كه در راكتور گداخت گرمائي از آن استفاده ميشود مي تواند در سنتز نانو لوله ها بسيار موثر واقع شود. فرض كنيد اطراف الكترود هاي گرافيتي را با يك ميدان مغناطيسي حاصل از چها رآهن ربا احاطه كنيم ،در اين صورت وجود ميدان سبب مي شود پلاسما ي وجود آمده به ديوارها برخورد نكند وفقط در محدوده ي گرافيتها دما افزايش مي يابد كه اين امر باعث كمك به تبخير بهتر وسريعتر آند مي شود ودر كل سنتز حالت بهتري به خود مي گيرد.در اين مورد ديگر جنس طرف اهميت خاصي ندارد.

روش Under de-ionized Water:

برخي از محققان در جهت تلاش براي حذف تكنيك خلا وهم چنين گازهاي گران قيمت هليوم وآرگون به روشهاي جديدي دست يافته اند، از اين موارد مي توان به قرار دادن الكترودها در نيتروژن ما يع اشاره كرد، كه خود پر خطر است. آب چون يكي از موادي است كه به فور در طبيعت يافت ميشود ،مي تواند به راحتي مورد استفاده قرار گيرد. البته آبي كه در ساخت نانو لوله ها استفاده ميشود،از نوع de- ionized يا يون زدوده است كه از عبور جريان به مقدار زيادي جلوگيري مي كند .اين آب كه معمولا در صنعت ميكرو الكترونيك كاربرد زيادي دارد را مي توان به راحتي با استفاده از دستگاههاي (رزين)در آزمايشگاههاي شيمي بدست آورد ومعمولا نيروگاهها از اين آب استفاده مي كنند. خصوصيت جالب در مورد آب يون زدوده اين است كه خاصيت عبور ندادن جريان در آن براحتي از دست نمي رود . سنتز در آب مي تواند هزينه ي آزمايش را تا حد قابل توجهي كاهش دهد، ولي مقدار ودرجه خلوص نانو تيوب هاي بوجود آمده د راين آزمايش بسيار پايين است خصوصا اينكه مقداري از نانو لوله ها ممكن است در آب به صورت مخلوط وارد شود، كه البته مي توان با يك روكش گرافيتي از آن جلوگيري كرد. شكل الكترود ها وحالت قرار گرفتن آنها در سنتز قوس الكتريكي بسيار انعطاف پذير است .تا كنون با آزمايشهائي كه به وسيله اين روش صورت گرفته حتي در زمانهايي كه از كاتاليز گرها استفاده شده است ، محصول از نوع چند جداره بوده واين خاصيت آب در تشكيل نانو لوله هاي MWNTs است.

دارو رساني به وسيله نانو تيوبهاي كربني:

پژوهشگران به تازگي در يافته اند كه شكل خاصي از مولكولهاي كربن مي توانند به خوبي وارد هسته سلولها شوند ومي توان در آِينده اي نزديك از آنها درسيستم دارسازي وواكسيناسيون استفاده كردامروزه از اين مولكولهاي كربن كه (نانو تيوبهاي كربنCarbon nano tubes) ناميده مي شوند تنها جهت حمل پپتيدهاي كوچك به هسته هاي سلولهاي فيبروپلاستي استفاده مي شود ولي پژوهشگران اميدوارند كه بتوانند از آنها در درمان سرطان ،ژن درماني وواكسيناسيون نيز استفاده نمايند. آلبرتوبيانكو از موسسه CNRSدر استراسبوك فرانسه مي كويد كه پژوهشگران در مراحل اوليه تحقيقات مي باشند واز آنجا كه به نظر مي آيد نانو تيوبها مي توانند وارد هسته شوند، از اين خاصيت جهت حمل ژنها ي ساخته شده ورساندن داروها به بخش خاصي از سلول مي توان استفاده كرد. تيم تحقيقاتي بيانكو ،نانو تيوبها را چند روز در دي متيل فرماميد حرارت دادند وبه دنبال آن اتصالات كوتاهتري (اتيلن گيكول TEG) ايجاد شد وسپس پپتيدهاي كوچك به مولكولهاي TEGمتصل شدند وهنگامي كه اين نانو تيوبها با سلولهاي فيبروپلاست انساني كشف شده مخلوط شدند،به سرعت به سمت هسته حركت كردند. اصولا طيف وسيعي از مولكولها مي توانند به نانو تيوبها متصل شوند وبه راحتي به سمت سلولها حركت كنند وبه طور كلي نانو تيوبها سميت بالايي ندارند ودر دوزهاي پايين براي سلولها بي ضررند ولي در غلضتهاي بالا باعث از بين رفتن سلولها مي شوند وبايد اثرات آن در بدن مورد مطالعه قرار گيرد. روت دوتكان پژوهشگر دانشگاه كاريف انگلستان مي گويد:دلايل بسياري وجود دارد كه نشان مي دهد كه ذرات بسيار ريز مي توانند در سيستم دارو سازي مفيد باشند.اما مكانيسم وارد شدن نانو تيوبها به داخل سلولها مشخص نمي باشد.همچنين او مي گويد تحقيات نا موفقي جهت استفاده از bucky balls (نانو تيوبهاي كربني كروي) جهت رساندن داروهاي ضد سرطان ونوكلوتيدهاي پرتو زا به داخل سلول انجام شده است.

خلق نانوتيوپهاي كربني ابر رسانا

پژوهشگران نانو تيوب هاي كربني تك ديواره يك بعدي خلق كرده‌اند كه علاوه بر ويژگيهاي ابر رسانايي‌، پتانسيلي براي زير بناي نسل جديد الكترونيك‌هاي بسيار ريز هستند . پژوهش‌هاي قبلي اين احتمال را داده اند كه دسته اي از نانو تيوب ها – در اصل صفحات گرافيتي در اندازه اتمي كه درون استوانه اي به دور هم پيچيده اند - هنگامي كه روي هم انباشته مي‌شوند رفتار ابر رسانايي‌ نشان مي‌دهند.
پژوهشهاي Sheng و Tang فيزيك‌دانان موسسه علم و نانو تكنولوژي دانشگاه هنگ كنگ نشان داده است كه تك نانو تيوب هاي مجزاي يك بعدي نيز مي‌توانند ابر رسانا باشند. Sheng درمصاحبه با روزنامه بين المللي United Press اظهار داشته " اين تيوب‌ها يك بعدي هستند بنابراين ما با وجود يك بعدي بودن ابر رسانايي را نشان داده ايم و اين اولين باري است كه تا به حال مشاهده شده است و از جهاتي مرز جديدي است زيرا ما داريم پديده يك بعدي بودن را مي بينيم . ما در دنياي سه بعدي زندگي مي كنيم و روي يك بعدي بودن تامل كرده ايم و اكنون پديده يك بعدي بودن يك حقيقت شده است ."
آنها نانو تيوب ها را درون حفرات يك كريستال زئوليت رشد دادند كه همانند شابلون و يا قالب عمل مي‌كند و براي تشكيل
تيوب ها ابتدا دما را تا C 400 و سپس تاC 500 بالا بردند.
كربن يكي از متداولترين و مهمترين عناصر مي‌باشد . الماس كربن خالص است . اعتقادي بر ابر رسانايي كربن خالص وجود ندارد اما اين كشف نشان مي‌دهد كه صفحات كربن اگر به تيوب هايي به حد كافي كوچك شكل داده شوند، مي‌توانند خواصشان را تغيير دهند. حال سوال اينست كه آيا كربن خالص مي تواند ابر رسانا باشد؟ پاسخ حداقل در مقياس نانو بله مي باشد.
محدوديت هاي فيزيكي سيليكون تلاش هاي انجام گرفته براي كوچك كردن اندازه كامپيوترها، افزايش قدرت محاسباتي آنها و كاهش مصرف برقشان را با مشكل مواجه كرده است . اندازه بسيار كوچك نانو تيوب ها – فقط چند صد يا چند هزار اتم – و خواص الكترونيكي چند منظورشان ، آنها را كانديداي خوبي براي انتخاب در جاهايي كه سيليكون مساله ساز است ساخته است .
در حاليكه پژوهش‌ روي نانو تيوب ها هنوز نسبتا جوان است، كشف هاي اخير خبر مي دهند كه نانو تيوب ها مي‌توانند اساس قطعات الكترونيكي كوچك نظيركامپيوترهاي فرا ريز را تشكيل دهند.

و اما آخرين خبر درباره تعمير لوله هاي کربني:

رفتار ميکروسکپي يک نانوتيوب کربني(لوله نانويي از جنس کربن) که پاره است ، همانند حرکت يک کفش دوزک بنظر مي رسد. شکاف موجود در بافت نانو تيوب ناشي از تنشهاي حرارتي وارد شده به آن بوده و در حين فرآيند گذر از ساختارپنج جهي به هفت وجهي کربن در طول لوله دوخته مي شود.(به شکل بالا توجه کنيد)

کانون دانش

کریمی که جهان پاینده دارد               تواند حجتی را زنده دارد

 

دانلود پروژه و کارآموزی و کارافرینی

پنج شنبه 12 بهمن 1391  7:30 PM
تشکرات از این پست
mohamadaminsh
mohamadaminsh
کاربر طلایی1
تاریخ عضویت : دی 1389 
تعداد پست ها : 25772
محل سکونت : خوزستان

پاسخ به:فناوری نانو



نانوتکنولوژی و کشاورزی نانوتكنولوژی به عنوان یك فناوری قدرتمند، توانایی ایجاد تحول در سیستم كشاورزی و صنایع غذایی آمریكا و سر تاسر دنیا را دارد. نمونه هایی از كاربردها و پتانسیلهای بالقوه نانوتكنولوژی در كشاورزی و صنایع غذایی، شامل سیستم های جدید آزاد كننده دارو برای درمان بیماریها، ابزارهای جدید بیولوژی سلولی و مولكولی، امنیت زیستی و تضمین سلامتی محصولات كشاورزی و غذایی و تولید مواد جدید مورد استفاده برای شناسایی عوامل بیماریزا و حمایت از محیط زیست می باشد.
تحقیقات اخیر، امكان استفاده از نانوشلها و نانوتیوپها را در سیستمهای جانوری برای تخریب سلولهای هدف، به روشنی ثابت نموده است. امروزه از نانوپارتیكل ها كه اجرام بسیار كوچكتر از حد میكرون هستند، برای رها سازی داروها و یا ژنها به داخل سلولها استفاده می كنند و مورد انتظار است كه این تكنولوژیها در ۱۰ الی ۱۵ سال آتی مورد بهره برداری كامل قرار گیرد. با روند رو به رشد تحقیقات اخیر، این پیش بینی منطقی است كه در دهه آینده، صنعت نانوتكنولوژی با توسعه بی نظیر خود، منجر به ایجاد انقلاب عظیم در بخش پزشكی و بهداشت و همچنین تولیدات دارویی دام و آبزیان گردد.
تصور امكان تزریق نانوپارتیكها به دامها و فعال شدن تدریجی ماده موثر همراه با این نانوذرات در بدن حیوان برای از بین بردن و تخریب سلولهای سرطانی، افق تحقیقاتی جدیدی را به روی محققان بازكرده است.

مقدمه:

نانوتكنولوژی به عنوان یك فناوری قدرتمند نوین، توانایی ایجاد انقلاب و تحولات عظیم را در سیستم تامین مواد غذایی و كشاورزی ایالت متحده آمریكا و در گستره جهانی دارد. نانوتكنولوژی قادر است كه ابزارهای جدیدی را برای استفاده در بیولوژی مولكولی و سلولی و همچنین تولید مواد جدیدی، برای شناسایی اجرام بیماری زا معرفی نماید و بنابراین چندین دیدگاه مختلف در نانوتكنولوژی وجود دارد كه می تواند در علوم كشاورزی و صنایع غذایی، كاربرد داشته باشد.
به عنوان مثال امنیت زیستی تولیدات كشاورزی و مواد غذایی، سیستمهای آزاد كننده دارو بر علیه بیماریهای شایع، حفظ سلامتی و حمایت از محیط زیست از جمله كاربردهای این علم می باشد.

علم نانوتكنولوژی چیست؟

انجمن ملی نوبنیاد نانوتكنولوژی كه یك نهاد دولتی در كشور امریكا می باشد ، واژه نانوتكنولوژی را چنین توصیف می كند: "تحقیق و توسعه هدفمند، برای درك و دستكاری و اندازه گیریها مورد نیاز در سطح موادی با ابعاد در حد اتم"، مولكول و سوپرمولكولها را نانوتكنولوژی می گویند. این مفهوم با واحدهایی از یك تا صد نانومتر، همبستگی دارد. دراین مقیاس خصوصیات فیزیكی، بیولوژیكی و شیمیایی مواد تفاوت اساسی با یكدیگر دارند و غالبا اعمال غیر قابل انتظار از آنها مشاهده می شود. در سیستم كشاورزی امروزی، اگردامی مبتلا به یك بیماری خاص شود، می توان چند روز و حتی چند هفته یا چند ماه قبل علائم نامحسوس بیماری را شناسایی كنند و قبل از انتشار و مرگ و میر كل گله، دامدار را برای اخذ تصمیمات مدیریتی و پیشگیری كننده آگاه كند و بنابراین می توان نسبت به مقابله با آن بیماری اقدام نماید.
نانوتكنولوژی به موضوعاتی در مقیاس هم اندازه با ویروسها و سایر عوامل بیماری زا می پردازد و بنابراین پتانسیل بالایی را برای شناسایی و ریشه كنی عوامل بیماری زا دارد. نانوتكنولوژی امكان استفاده از سیستمهای آزاد كننده داروئی را كه بتواند به طور طولانی مدت فعال باقی بماند، فراهم می كند.
به عنوان مثال استفاده از سیستمهای آزاد كننده دارو، می توان به ایمپلنتهای ابداع شده مینیاتوری در حیوان اشاره كرد كه نمونه های بزاقی را به طور مستمر كنترل می كنند و قبل از بروز علائم بالینی و تب، از طریق سیستمهای هشدار دهنده وسنسورهای ویژه، می تواند احتمال وقوع بیماری را مشخص و سیستم خاص ازاد كننده دارو معینی را برای درمان موثر توصیه كنند. طراحی سیستمهای آزاد كننده مواد دارویی، یك آرزوی و رویای همیشگی محققان برای سیستمهای رها كننده داروها، مواد مغذی و پروبیوتیكها بوده و می باشد.
نانوتكنولوژی به عنوان یك فناوری قدرتمند به ما اجازه می دهد كه نگرشی در سطح مولكولی و اتمی داشته و قادر باشیم كه ساختارهایی در ابعاد نانومتر را بیافرینیم.
برای تعیین و شناسایی بسیار جزئی آلودگیهای شیمیایی، ویروسی یا باكتریایی در كشاورزی و صنایع غذایی معمولا از روشهای بیولوژیكی، فیزیكی و شیمیایی استفاده می گیرد. در روشهای اخیر نانوتكنولوژی برای استفاده توام این روشها، یك سنسور در مقیاس نانو طراحی كرده اند در این سیستم جدید، مواد حاصل از متابولیسم و رشد باكتریها با این سنسورها تعیین می گردد.
سطوح انتخابی بیولوژیكی، محیطی هایی هستند كه عمده واكنشهای و فعل و انفعالات بیولوژیكی و شیمیایی در آن محیط انجام می شود.
چنین سطوحی همچنین توانایی افزایش یا كاهش قدرت اتصال ارگانیزمها و ملكولهای ویژه را دارد. از جنبه های كاریردی استفاده از این سطوح، طراحی سنسورها، كاتالیستها، و توانایی جداسازی یا خالص سازی مخلوطهای بیومولكولها می باشد. نانومولكولها موادی هستند كه اخیرا از طریق نانوتكنولوژی به دست آمده اند و یا در طبیعت موجودند و بوسیله این ساختارها، امكان دستكاریهای درسطح نانو و تنظیم و كاتالیز واكنشهای شیمیایی وجود دارد. نانو مواد از اجزای با سایز بسیار ریز تشكیل شده اند و اجزا تشكیل دهنده چنین ساختارهایی بر خواص مواد حاصل در سطح ماكرو تاثیر می گذارد.
ساختارهای كروی توخالی (buckey balls ) كه با نام دیگر فلورن هم شناخته شده اند، مجموعه از اتمهای كربن متحدالشكل به صورت كروی هستند كه در چنین ساختاری هر اتم كربن به سه اتم كربن مجاورش متصل شده. دانشمندان اكنون به خوبی می دانند كه چگونه یك چنین ساختاری را به وجود آورند و كاربردهای بیولوژیكی آن امروزه كاملا شناخته شده است. از جمله كاربردهای چنین ساختارهایی برای رها سازی دارو یا مواد رادیواكتیو در محلهای مبتلا به عوامل بیماریزا می باشد.
ایده استفاده از۶۰ اتم كربن به جای ۸۰ اتم، ساختارهای توخالی را برای آزاد سازی دارو فراهم می كند. هدف از این كار در نهایت رسیدن به گروهای قابل انحلال پپتیدها در آب می باشد كه نتیجتا این مولكولها به جریان خون راه پیدا می كنند. نانوتیوپها ساختارهای توخالی دیگری هستند كه از دو طرف باز شده اند و گروههای اتمی دیگری به آنها اضافه شده اند و یك ساختار شش گوشه را تشكیل می دهند. نانوتیوپها می توانند به عنوان یك ورقه گرافیت در نظر گرفته شوند كه به دور یك لوله پیچیده شده اند.
كاربرد پلی مرهای سنتزی در داروسازی پیشرفتهای چشمگیری داشته است. سبكی، نداشتن آثار جانبی و امكان شكل دهی پلی مرها، كاربرد آنها را در زمینه پزشكی و دامپزشكی افزایش داده است. در روشهای دارورسانی مدرن، فرآورده شكل دارویی موثر خود را با یك روند مشخص شده قبلی برای مدت زمان معلوم بطور سیستماتیك به عضو هدف آزاد می كند. پلیمرها نه تنها به عنوان منابع ذخیره دارو و غشا و ماتریكس های نگهدارنده عمل می كنند بلكه می توانند سرعت انحلال آزاد سازی و تعادل دفع و جذب آزاد را در بدن كنترل كنند.
دندریمر(پلی مر) یك طبقه جدید از مولكولهای سه بعدی مصنوعی هستند كه از مسیر و راه نانوسنتزی به دست آمده اند كه این دندریمرها از توالیها و شاخه ای تكراری حاصل آمده اند. ساختار چنین تركبیباتی از یك درجه بالای تقارن برخوردار است.
نقاط كوانتومی، كریستالهایی در مقیاس نانومتری هستند كه اساسا در اواسط ۱۹۸۰ برای كاربردهای اپتوالكترونیك به كاربرده شدند. آنها در طی سنتز شیمیایی در مقیاس نانو ایجاد می شوند و از صدها یا هزاران اتم در نهایت یك ماده نیمه هادی معدنی تشكیل شده اند كه این ماده به اتمها خاصیت فلورنس می دهد. وقتی یك نقطه كوانتومی با یك پرتو نور برانگیخته می شود آنها دوباره نور را منتشر می كنند. میزان یك طیف نشری متقارن باریك مستقیم به اندازه كریستال بستگی دارد.
این بدان معنی است كه اجرام كوانتومی می توانند به خوبی برای انتشار نور در طول موجهای مختلف طراحی شوند. نانوشلها یك نوع جدید از نانوذرات كه از هسته دی الكتریك مانند سیلیكا تشكیل شده اند كه با یك لایه فلزی فوق العاده نازك(به عنوان مثال طلا) پوشش داده شده اند. نانوشلهای طلا، دارای خواص فیزیكی مشابه به آنهایی هستند كه از كلوئیدها طلا ساخته شده اند. پاسخهای نوری نانوشلهای طلا به طور قابل توجهی به اندازه نسبی هسته نانوذرات و ضخامت لایه طلا بستگی دارد.
دانشمندان قادرند نانوشلهایی را بسازند كه ملكولهای آنتی ژنها بر روی آنها سوار شوند و در مجموع سلولهای سرطانی و تومورهای موجود را تحت تاثیر قرار دهند. این ویژگی مخصوصا در رابط با نانوشلها می باشد كه این ساختارها قادرند فقط تومورهای موجود را تحت تاثیر قرار دهند و سلولهای مجاور تومور دست نخورده باقی می ماند. از طریق حرارتی كه به طور انتخابی در سلولهای توموری ایجاد می كند منجر به از بین بردن این سلولها می شود.

كاربردهای نانوتكنولوژی در علوم دامی

سلامتی دامهای اهلی از جمله مسائلی است كه با اقتصاد دامداریها در ارتباط می باشد. یك دامپزشك می نویسد كه "علم نانوتكنولوژی توانایی و پتانسیل بالقوه ای بر روی رهیافتهای آتی دامپزشكی و درمان دامهای اهلی خواهد داشت". تامین اقلام غذایی برای دامهای اهلی همواره با افزایش هزینه و نیاز به مراقبتهای خاص دامپزشكی و تجویز دارو و واكسن همراه بوده است و نانوتكنولوژی توانایی ارائه راهكارهای مناسب برای حل این معضلات را دارد.

سیستمهای سنتیتیك آزاد كننده مواد داروئی

امروزه مصرف آنتی بیوتیكها، واكسنها، پروبیوتیكها و عمده داروها از طریق وارد كردن آنها از راه غذا یا آب دامها و یا از راه تزریق عضلانی صورت می گیرد. رها سازی یك مرحله ای دارو در برابر یك میكروارگانیزم علارغم تاثیرات درمانی و اثرات بازدارنده پیشرفت یك بیماری معمولا با بازگشت مجدد علائم بیماری وتخفیف اثرات دارویی مصرفی همراه است. روشهای موجود در سطح نانو، قابلیت تشخیص و درمان عفونت،اختلالات تغذیه ای و متابولیكی را دارا می باشد. سیستمهای سنتتیك رها سازی دارو می تواند خواص چند جانبه برای حذف موانع بیولوژیكی در افزایش بازده درمانی داروی مورد استفاده و رسیدن آن به بافت هدف داشته باشد كه از جمله این خواص می توان به موارد ذیل اشاره كرد.
۱) تنظیم زمانی مناسب برای آزاد سازی دارو
۲) قابلیت خود تنظیمی
۳) توانایی برنامه ریزی قبلی
بنابراین در آینده نزدیك پیشرفتهای بیشتر تكنولوژی امكانات زیر را فراهم می كند:
▪ توسعه سیستمهای سنتیتیك رها سازی داروها،پروبیوتیكها، مواد مغذی
▪ افزایش سرعت شناسایی علائم بیماری و كاربرد روشهای درمانی سریع
▪ توسعه سیستمهای رها سازی اسیدهای نوكلئیك و مولكولهای DNA
▪ كاربرد نانومولكولها در تولید واكسنهای دامی

تشخیص بیماری و درمان دامها

تصور امكان تزریق نانوپارتیكها به دامها و فعال شدن تدریجی ماده موثر همراه با این نانوذرات در بدن حیوان برای از بین بردن و تخریب سلولهای سرطانی، افق تحقیقاتی جدیدی را به روی محققان بازكرده است. محققان دانشگاه رایس مراحل مقدماتی كاربرد نانوشلها را برای تزریق به جریان خون ارزیابی كردند.
این ذرات نانو به گیرنده های غشاسلولهای سرطانی متصل می شوند و با ایجاد امواج مادون قرمز باعث بالا رفتن دمای سلولهای مذكور به ۵۵ درجه و تركیدن و از بین رفتن تومورهای موجود می گردند. همچنین نانوپارتیكهایی كه از اكسیدهای آهن ساخته می شوند، با ایجاد امواج مگنتیك در محل استقرار سلولهای سرطانی باعث از بین بردن این سلولها می شوند. یكی از اساسی ترین محورهای تحقیقاتی كنونی، توسعه سیستمهای رها سازی DNA غیرزنده، با بازدهی مناسب و با حداقل هزینه و عوارض جانبی و سمی می باشد، كه در ژن درمانی مورد استفاده قرار می گیرند.

اصلاح نژاد دام

مدیریت تلاقی و زمان مناسب جفتگیری دامها، از جمله مواردی است كه در مزارع پرورش گاوشیرده به هزینه و زمان طولانی نیاز دارد. از راهكارهایی كه اخیر مورد استفاده قرار گرفته است، استفاده از نانوتیوپها خاص در داخل پوست می باشد كه زمان واقعی پیك هورمون استروژن و وقوع فحلی را دار دامها نشان می دهد و لذا با علائمی كه سنسورهای موجود به دستگاه مونیتور می فرستد، زمان دقیق و واقعی تلقیح را به دامدار نشان می دهد.

آرش داوری
ترجمه و گرد آوری: آرش جوانمرد، مژگان حاج اللهوردی پور، نادر اسدزاده
پایگاه مقالات علمی پژوهشسرای دانش آموزی شهرستان مراغه
کانون دانش

کریمی که جهان پاینده دارد               تواند حجتی را زنده دارد

 

دانلود پروژه و کارآموزی و کارافرینی

پنج شنبه 12 بهمن 1391  7:30 PM
تشکرات از این پست
mohamadaminsh
mohamadaminsh
کاربر طلایی1
تاریخ عضویت : دی 1389 
تعداد پست ها : 25772
محل سکونت : خوزستان

پاسخ به:فناوری نانو



آیا بیونانوتكنولوژی با نانوبیوتكنولوژی متفاوت است

بیو مقدم بر نانو

با پیشرفت علم و تكنولوژی در جهان، مرتبا بر تعداد واژه های تخصصی افزوده می شود. در این میان، گسترش علوم و تكنولوژی نانو و تعامل آن با بیوتكنولوژی، منجر به تولید و كاربرد واژه هایی چون بیونانوتكنولوژی و نانوبیوتكنولوژی در گفته ها و نوشته های محققان مختلف در سطح جهان شده است. آشنایی محققان و سیاستگذاران علمی كشور با این واژه ها، می تواند آنها را در مطالعات و تصمیم گیری ها یاری كند. در این مطلب، سعی شده است با استفاده از منابع اینترنتی، مقالات و كتب موجود و همچنین استفاده از نظرات برخی متخصصین امر، تعاریف ساده ای از دو واژه بیونانوتكنولوژی و نانوبیوتكنولوژی ارائه شود.

مفهوم و زمینه كاربرد بیونانوتكنولوژی

تلفیق بیوتكنولوژی با فناوری نوظهور نانوتكنولوژی، مباحث جدیدی را بین محققان، هم در سطح دانشگاهی و هم در حوزه صنعت به وجود آورده است. نتیجه این تلفیق، ظهور «بیونانوتكنولوژی» به عنوان یك زمینه تحقیقاتی بین رشته ای است كه به سرعت در حال رشد و توسعه است و با مقوله علم و مهندسی در سطح مولكول ارتباط دارد. برخی از صاحب نظران، بیونانوتكنولوژی را به عنوان زیرمجموعه ای از نانوتكنولوژی، به این صورت تعریف كرده اند:
«مطالعه و ایجاد ارتباط بین بیولوژی مولكولی ساختاری و نانوتكنولوژی مولكولی». برخی دیگر، آن را به عنوان زیرمجموعه ای از بیوتكنولوژی بدین شكل تعریف كرده اند: «به كارگیری پتانسیل بالقوه بیولوژی در ساخت و سازماندهی ساختارهای پیچیده با استفاده از مواد ساده و با دقت در حد اتم». در این زمینه، تنها تفاوتی كه بین بیونانوتكنولوژی و بیوتكنولوژی وجود دارد این است كه طراحی و ساخت در مقیاس نانو جزء لاینفك پروژه های بیونانوتكنولوژی است در حالی كه در پروژه های بیوتكنولوژی، نیازی به فهم و طراحی در حد نانو نیست.
چنان كه ملاحظه می شود برخلاف تعریف «بیوتكنولوژی» كه به معنی فناوری استفاده از موجودات و اجزای موجودات زنده در راستای نیازهای صنایع مختلف است و همچنین برخلاف تعاریف واژه هایی چون «بیومتریال» و «بیومكانیك» كه معمولا به معنی استفاده از قابلیت های فناوری های «مواد» و یا «مكانیك» در كاربردهای زیستی است، در تعریف بیونانوتكنولوژی، هم كاربرد ابزارهای بیولوژیكی به عنوان سازمان دهنده و ماده اولیه جهت ساخت محصولات و مواد نانویی، مورد توجه است و هم كاربرد محصولات تولیدی تكنولوژی نانو، جهت مطالعه وقایع درون سلول های زنده و تشخیص و معالجه بیماری ها. آنچه مسلم است ظهور این زمینه تحقیقاتی، حاصل تغییر عقیده بسیاری از محققان در استفاده از راهكارهای پایین به بالا Bottom-Up approach به جای استفاده از راهكار بالا به پایین Top-Down approach جهت ساخت وسایل و مواد بسیار ریز است.
در راهكارهای بالا به پایین نانوتكنولوژی، سعی بر این است كه وسایل موجود مرتبا كوچك تر شوند به این راهكار، نانوتكنولوژی مكانیكی نیز گفته می شود.
اما در راهكار پایین به بالا، هدف ایجاد ساختارهای ریز از طریق اتصال اتم ها و مولكول ها به یكدیگر است در این راهكار از الگوهای بیولوژیكی بهره گیری می شود.

محصولات و زمینه های فعالیت بیونانوتكنولوژی
برخی از محصولات و زمینه های فعالیت بیونانوتكنولوژی عبارتند از:

۱ بیونانوماشین ها: مهم ترین زمینه كاربرد بیونانوتكنولوژی، ساخت بیونانوماشین ها ماشین های مولكولی با ابعادی در حد نانومتر است. در یك باكتری هزاران بیونانوماشین مختلف وجود دارد. نمونه آنها، ریبوزوم دستگاه بسته بندی پروتئین است كه محصولات نانومتری پروتئین ها را تولید می كند. از خصوصیات خوب بیونانوماشین ها به عنوان مثال حسگرهای نوری یا آنتی بادی ها، امكان هیبریدكردن آنها با وسایل سیلیكونی با استفاده از فرآیند میكرولیتوگرافی است. به این ترتیب با ایجاد پیوند بین دنیای نانویی بیونانوماشین و دنیای ماكروی كامپیوتر، امكان حسگری مستقیم و بررسی وقایع نانویی را می توان به وجود آورد. نمونه كاربردی این سیستم، ساخت شبكیه مصنوعی با استفاده از پروتئین باكتریورودوپسین است.
۲ مواد زیستی: كاربرد دیگر بیونانوتكنولوژی، ساخت مواد زیستی مستحكم و زیست تخریب پذیر است. از جمله این مواد می توان به DNA و پروتئین ها اشاره كرد. موارد كاربرد این مواد و به خصوص در زمینه پزشكی متعدد است. از جمله موارد كاربرد این مواد، استفاده از آنها به عنوان بلوك های سازنده نانومدارها و در نهایت ساخت وسایل نانویی Nano-Device است.
۳ موتورهای بیومولكولی: موتورهای بیومولكولی، موتورهای محركه سلول هستند كه معمولا از دو یا چند پروتئین تشكیل شده اند و انرژی شیمیایی عموما به شكل ATP را به حركت مكانیكی تبدیل می كنند. از جمله این موتورها، می توان به پروتئین میوزین اشاره کرد که باعث حركت فیلامنت ها می شود،( پروتئین های درگیر در تعمیر DNA یا ویرایش RNA به عنوان مثال، آنزیم های برشی و ATPase). از این موتورها در ساخت نانوروبات ها و شبكه هادی ها و ترانزیستورهای مولكولی قابل استفاده در مدارهای الكترونیكی استفاده می شود.

نانوبیوتكنولوژی و رابطه آن با بیونانوتكنولوژی

اما نانوبیوتكنولوژی نیز واژه دیگری است كه در سال های اخیر، محققان و صاحب نظران در كتب، مقالات و كنفرانس ها به كار می برند. طبق تعریف برخی از این محققان،
نانوبیوتكنولوژی، زیرمجموعه ای از نانوتكنولوژی است كه در آن از ابزارها و فرآیندهای نانویی و میكرونی برای ساخت و تهیه محصولاتی استفاده می شود كه در مطالعه سیستم های زنده استفاده می شوند. برخی دیگر از محققان، نانوبیوتكنولوژی را زمینه ای از نانوتكنولوژی می دانند كه در آن از سیستم های بیولوژیكی موجود، همچون سلول، اجزای سلولی، اسیدهای نوكلئیك و پروتئین ها برای ایجاد ساختارهای نانویی تلفیقی مركب از مواد آلی و معدنی استفاده می شود.
اگر به مفهوم و هدف دو زیرشاخه نانوتكنولوژی یعنی بیونانوتكنولوژی و نانوبیوتكنولوژی نگاه شود، می توان فهمید كه اهداف هر دو شاخه یعنی تولید محصولاتی كه جهت مطالعه سیستم های زنده به كار می روند و همچنین فرآیندها و مقیاس فعالیت هر دو شاخه یعنی مقیاس های در سطح نانو، تقریبا یكسان است. بنابراین می توان این دو شاخه را به صورت كلی با نام نانوبیوتكنولوژی نامید. منتها زمانی كه به طور صرف، از الگوها و مواد زیستی جهت ساخت وسایل در ابعاد نانو استفاده می شود، بهتر است پیشوند «بیو» مقدم بر پیشوند «نانو» بیاید. در این حالت، كاربرد واژه بیونانوتكنولوژی تخصصی تر از واژه نانوبیوتكنولوژی خواهد بود.
می توان بیونانوتكنولوژی را شكلی خاص از نانوبیوتكنولوژی دانست كه مبنای آن، استفاده از موادزیستی برای مثال پروتئین ها یا DNA جهت ساخت وسایل نانویی است اما در هنگام استعمال واژه نانوبیوتكنولوژی، استفاده از ابزارهای نانویی در كاربردهای بیولوژیك نیز مورد نظر خواهد بود. بار دیگر تاكید می شود كه كاربرد هر كدام از این دو واژه، تا حد زیادی سلیقه ای است و به زمینه تخصصی محققان مختلف بستگی دارد.

نتیجه گیری و چشم انداز

از مجموع مباحث فوق نتیجه گرفته شد كه «بیونانوتكنولوژی» یك حوزه نوین ناشی از تلفیق علوم زیستی و مهندسی در حوزه نانو است كه افق های جدیدی را در زمینه ساخت و توسعه سیستم های تلفیقی به وجود آورده و محققان را امیدوار كرده است كه بتوانند از این تلفیق، در ساخت نانوساختارهایی استفاده كنند كه در آنها از مولكول های بیولوژیكی به عنوان اجزای سیستم مورد نظر استفاده شود، به عنوان مثال، از استراتژی طراحی بیولوژیك مثلا، حالت زیپ مانند مولكول دورشته ای DNA بتوانند در ساخت چارچوب های جداشدنی و الگویی برای چینش Assembly پایین به بالای فرآیندی كه طی آن، سازماندهی مولكولی، بدون دخالت نیروی خارجی صورت می گیرد مواد معمول تر استفاده كنند. این توانمندی نه تنها در حل مسائل مهمی در علوم زیستی چون كاوش و شناسایی دقیق ساختار موجودات زنده كاربرد خواهد داشت، بلكه می تواند محققان را در رفع چالش های عمده مهندسی همچون نیاز به تكنیك های نوین جهت سنتز مواد و دستكاری آنها یاری دهد و به این ترتیب دنیای نانو را به دنیای ماكرو وصل كند. به عبارت دیگر این شاخه مهم علمی یعنی بیونانوتكنولوژی، به زودی قابلیت كاربرد در حوزه های مختلف غیرزیستی و حوزه های كاربردی ماكرو را خواهد داشت كاربردهایی كه هرچند در حوزه زیستی نیستند ولی الهام گرفته از فرآیندهای زیستی Bio-inspired هستند.

[ مهدی رهایی ]
منبع : آينده نگر
کانون دانش

کریمی که جهان پاینده دارد               تواند حجتی را زنده دارد

 

دانلود پروژه و کارآموزی و کارافرینی

پنج شنبه 12 بهمن 1391  7:30 PM
تشکرات از این پست
mohamadaminsh
mohamadaminsh
کاربر طلایی1
تاریخ عضویت : دی 1389 
تعداد پست ها : 25772
محل سکونت : خوزستان

پاسخ به:فناوری نانو



بيوتكنولوژي ، بيونانو تكنولوژي ، نانو بيو تكنولوژي بيوتكنولوژي در اوايل قرن بيستم وارد عرصه جهاني شد. ليكن مهندسي بيوفرايند بعد از جنگ جهاني دوم و با توليد صنعتي پني سيلين به روش تخمير وارد معادلات علمي، تجاري و اقتصادي جهان شد. بيوتكنولوژي يك مفهوم كلي و يك موضوع بين رشته اي است كه دامنه وسيعي از علم (مهندسي، پزشكي، كشاورزي، صنايع غذايي . . .) را شامل مي شود. شايد يكي از تعاريف ساده و نزديك به ذهن در بيوتكنولوژي، انواع دسته بنديهاي محصولات حاصل از تخمير باشد كه عمده ترين آن شامل مولكول هاي كوچك (Small Molecules) ، ماكرومولكولها (مانند آنزيمها و پروتئين ها) ، مواد ساده سلولي(مانند مخمرنان) و محصولات كمپلكس(مانند غذاهاي تخميري و محصولات كشاورزي) است.
ماكرومولكولها كه از مهمترين محصولات حاصل از تخمير به شمار مي آيند، بخش بسيار وسيعي از فرايندهاي بالادستي و پايين دستي بيوتكنولوژي را به خود اختصاص داده و بيوتكنولوژي نيز بيشترين پيشرفت و توسعه را به اين دست از محصولات اختصاص داده است. به لحاظ اهميت و گستره اين محصولات، لقب نسل اول مواد و يا محصولات بيوتكنولوژيكي (First Generation) را مي توان به آنها اطلاق كرد.
اما در سالهاي اخير علاقه مندي بشر به نسل ديگري از محصولات بيوتكنولوژيكي افزون شده، تا جايي كه تكنيكهاي بالا دستي و پايين دستي را كاملاً تحت شعاع خود قرار داده است. امروزه نياز فراواني براي توليد، بازيافت و خالص سازي نانو بيومواد (محصولات) نظير پلاسميد DNA و ويروس ها براي ژن درماني، اسمبلي ماكرومولكولها (مانند پروتئين نانو ساختارها)، بعنوان حامل دارو و ذرات ويروس مانند (Virus-like particle) براي استفاده در واكسن ها (Vaccine Components) وجود دارد و محققين، خود را مواجه با مشكلات و معضلات جديدي در اين خصوص مي بينند. نانو بيو مواد بواسطه اندازه ويژه شان (با قطر10-300 نانومتر)، شيمي سطح پيچيده و ارگانيزمهاي دروني شان، تكنيكهاي بالا دستي و پايين دستي گسترش يافته براي نسل اول مواد بيولوژيكي را به چالش طلبيده و روش هاي جديدي را براي توليد و بازيافت طلب مي كنند. به همين منظور با يك دسته بندي منطقي مي توان اين دست از محصولات بيو تكنولوژيكي را نسل دوم (Second Generation) محصولات ناميده و راه كارهاي جديد را در مواجهه با آنها جستجو كرد.

تعريف:

نانوتكنولوژي مجموعه اي است از فناوري هايي كه بصورت انفرادي يا با هم براي به كارگيري و يا درك بهتر علوم مورد استفاده قرار مي گيرند. بعضي از اين فناوري ها هم اكنون در دسترس و بعضي نيز در حال توسعه و پيشرفت اند كه ممكن است در طي سالها و يا دهه هاي بعد مورد استفاده واقع شوند. بيوتكنولوژي جزو فناوري هاي در حال توسعه است كه با به كارگيري مفهوم نانو به پيشرفتهاي بيشتري دست خواهد يافت.يك تعريف كلاسيك از تعامل بيوتكنولوژي و نانو تكنولوژي بصورت زير بيان مي شود:
»بيوتكنولوژي به نانو تكنولوژي مدل ارايه مي دهد، در حالي كه نانوتكنولوژي با در اختيار گذاشتن ابزار براي بيوتكنولوژي آنرا براي رسيدن به اهدافش ياري مي رساند.«
پر واضح است كه تعامل بيوتكنولوژي و نانوتكنولوژي و يا به تعبيري نانوبيوتكنولوژي بسيار فراتر از اين است. شايد بتوان گفت نانو بيوتكنولوژي مترادف با استفاده از قابليت هاي نانو در كاربردهاي زيستي است. اين شاخه از فناوري به ما اجازه مي دهد تا اجزا و تركيبات را داخل سلولها بصورت عام قرار داده و يا با استفاده از روش هاي جديد خود آرايي و مكان آرايي در موج اول نانو بيوتكنولوژي، نانو بيو مواد را ساخته و با تكنيكهاي پيشرفته به خالص سازي و باز يافت آنها بپردازيم. بي گمان زمينه ها و فازهاي بعدي اين فناوري جديد به توليد وسايل نانو بيو (موج دوم) و در نهايت به ارايه ماشين هاي هوشمند و روبات ها منجر خواهد شد (موج سوم)كه كاربردهاي فراواني در حوزه هاي مهم بيوتكنولوژي مانند پزشكي، كشاورزي و صنايع غذايي خواهند داشت.
سؤالي كه به ذهن متواتر شده و محققان و متخصصان علوم بيوتكنولوژي و نانو بيوتكنولوژي را متوجه آن كرده، اين است كه مرز بيوتكنولوژي و نانو بيوتكنولوژي در كجاست؟
اگر چه اين دو فناوري هم پوشانيهاي زيادي دارند و به تعبيري داراي مرزهاي نامشخص (Fuzzy) هستند، اما شايد دسته بندي محصولات بيوتكنولوژيكي به نسل اول و نسل دوم كمك قابل توجهي به اين موضوع كند. حوزه اي از فناوري كه با توليد، باز يافت و بكارگيري نسل دوم مواد و محصولات بيوتكنولوژيكي سروكار دارد، همان نانوبيوموادي كه توليد و بازيافت و خالص سازيشان خصوصاً در ابعاد صنعتي به شدت تكنيك هاي موجود را به مخاطره انداخته و روشهاي نوين را مي طلبد، مي تواند محدوده كاري نانوبيوتكنولوژي و يا بيونانو تكنولوژي باشد.
با تقسيم بندي اولويت هاي تحقيقاتي نانو بيوتكنولوژي به سه موج نانو بيومواد، نانو وسايل و نانو ماشين ها، لزوم تمايز بيوتكنولوژي و نانو تكنولوژي بطور وضوح در محدوده كاري موج اول نانو بيوتكنولوژي خود را نمايان مي سازد. چون بي ترديد موج هاي دوم و سوم اين فناوري هم پوشاني بسيار ناچيزي با بيوتكنولوژي به معناي عام خواهند داشت.
اما موضوع بعدي كه ضرورت شفاف سازي و بيان واژه ها در آن مهم است، تشابه و تمايز نانوبيوتكنولوژي و بيونانو تكنولوژي است. به بيان ديگر اصولاً فرقي بين اين دو واژه وجود دارد و اگر چنين است اين تمايزات چيست؟
براي ساخت تمام نانو موادها(ذرات) همواره دو روش در نانوتكنولوژي مد نظر است. ابتدا روشهاي بالا به پايين (Top down) و سپس روش هاي پايين به بالا (Bottom up) . نانو بيو ذرات نيز از اين قاعده مستثنا نبوده و از طريق يكي از اين دو روش توليد مي شوند. اگر يك نانو بيو محصول از روش هاي بالا به پايين توليد شود، به بيان ديگر با تكيه براصول و مباني اصلي بيوتكنولوژي، و در ادامه با روشهاي اصلاح شده خالص سازي و بازيافت – كه با كمك تكنيكهاي جديد توسعه يافته و براي محصولات نسل دوم (نانو بيوموادها) بكار گرفته مي شود به محصول نهايي (End Product) تبديل شود، به اين مجموعه از فناوريها بيونانو تكنولوژي اطلاق مي شود. به عنوان مثال بيو راكتوري را در نظر بگيريد كه يك سلول حيواني خاص در آن كشت داده شده و در شرايط ويژه رشد كند. محصول مورد نظر يك ويروس درون سلولي است كه براي استفاده در ژن درماني با درجه خلوصي ويژه مورد نياز است. بدين ترتيب نانو بيو محصول مورد نظر در درون سلول توليد شده و سپس بازيافت مي شود (از بالا به پايين). از طرف ديگر اگر با بهره گيري مستقيم از فناوري نانو يك نانو بيو محصول از پايين به بالا ساخته شود، مي توان اين حوزه از فناوري نانو را نانو بيوتكنولوژي دانست. مثال واضح آن توليد تمام نانو بيو ذرات از طريق خود آرايي و مكان آرايي است كه با در كنار هم قرار گرفتن اجزاي تشكيل دهنده، محصول مطلوب توليد مي شود. اسمبلي ماكرومولكولها و بطور خاص پروتئين نانو ساختارها از مثال هاي جالب توليد از پايين به بالاي نانو بيو مواد است كه مي توانند بعنوان حاملهاي دارو استفاده شوند. بكارگيري اين روش در ابعاد آزمايشگاهي خوشبختانه در داخل كشور آغاز شده و در حال گسترش و تكامل است.
بطور كل بنظر مي رسد كه پژوهشگران دنيا در ساخت مواد از بالا به پايين تا حدود زيادي موفق بوده و از ساخت توده اي مواد و بازيافتشان (بيونانو تكنولوژي) و رسيدن به بيوذرات در اندازه نانو بهره گرفته اند. ضروري است در ايران نيز با برنامه ريزي مدون، اين مهم را گسترش داد و تقويت كرد. (البته پژوهشگران ايراني در اندازه هاي آزمايشگاهي موفق بوده اند و بايد در فاز بعدي به سمت توليد انبوه و صنعتي بروند). ساخت از پايين به بالاي بيوذرات در دستور كار مراكز تحقيقاتي جهان قرار دارد و پيش بيني ها حاكي از آن است كه دنيا بتواند به توليدات قابل توجهي در اين خصوص تا سال2015 ميلادي دست يابد.
همانند مبحث قبلي (مرزهاي بيوتكنولوژي و نانو بيوتكنولوژي) با عبور از موج اول تحقيقات و توليدات، اهميت شفاف سازي واژه ها بين بيونانوتكنولوژي و نانو بيوتكنولوژي نيز كم رنگ شده و نانو بيوتكنولوژي تا حد زيادي موج هاي دوم و سوم تحقيقات و فعاليتها را در انحصار خود قرار مي دهد.
محققان همواره براي رسيدن به اهداف ريز و درشت علمي تحقيقاتي خود به دسته بندي ها و اولويت بنديها نياز دارند. با توفيقات نسبتاًَ خوبي كه در زمينه هاي تحقيقاتي بيونانو تكنولوژي در فرآيندهاي بالا دستي بوجود آمده است، لزوم توجه بيشتر به فرآيندهاي پايين دستي بيونانو تكنولوژي بيش از پيش نمايان مي شود. البته نياز پژوهشگران به بهينه سازي توليد نانو بيو مواد در ابعاد صنعتي همچنان از دغدغه هاي جدي در سالهاي آينده است.
در كنار بيو نانو تكنولوژي كه به تعبيري مقدم بر نانو بيو تكنولوژي است، بايد با جديت به نانو بيوتكنولوژي و سه موج مهم آن پرداخت و براساس اولويت هاي مطرح شده براي رسيدن به اهداف كوتاه مدت، ميان مدت و بلند مدت برنامه ريزي كرد تا بتوان همگام با ديگران در جهان، شعار تعلق قرن بيست و يكم به نانو تكنولوژي را به منصه ظهور رساند.

منبع : ماهنامه نفت پارس شماره 59
کانون دانش

کریمی که جهان پاینده دارد               تواند حجتی را زنده دارد

 

دانلود پروژه و کارآموزی و کارافرینی

پنج شنبه 12 بهمن 1391  7:30 PM
تشکرات از این پست
mohamadaminsh
mohamadaminsh
کاربر طلایی1
تاریخ عضویت : دی 1389 
تعداد پست ها : 25772
محل سکونت : خوزستان

پاسخ به:فناوری نانو



نانو بیوتکنولوژی در ایدز

نانو تکنولوژی چیست؟ نانو تکنولوژی توانمندی تولید مواد، ابزارها و سیستم های جدید با در دست گرفتن کنترل در سطح مولکولی و اتمی و استفاده از خواصی است که در آن سطوح ظاهر می شود. و رویکردی جدید در تمام رشته هاست. فناوری نانو به ساخت چیزهایی که کوچکتر یا مقاومت پذیرترند می پردازند. ساخت چیزهایی نو یا دارای ویژگی های اضافی و یا تولید ماشین هایی که به تولید نمونه های جدید از خود منجر خواهد شد. در مقیاس نانو، ویژگی های معمولی مواد تغییر می کند و رفتار سطح، رفته رفته بر رفتار سطوح، رفته رفته بر رفتار توده ایی ماده غالب می شود و قلمروی کاملاً نوین به رویمان گشوده خواهد شد.

نخستین جرقه ی درمان ایدز:

23 سال قبل نخستین جرقه درمان ایدز کسی که برای اولین بار فهمید داروی AZT می تواند یک درمان برای بیماری ایدز باشد. امروز دانشمندان توانسته اند عوارض دارو را کمتر کنند و هم چنان در مورد این دارو و اثرات مثبت آن امیدواری وجود دارد. البته این دارو درمان ایدز محسوب نمی شود اما تاکنون حداقل در طولانی کردن عمر15 هزار آمریکایی که به مرحله علامت دار بیماری رسیده اند مؤثر بوده است. کشف این دارو در واقع جرقه اول امیدواری در درمان ایدز بود. اما مشکل این دارو بود و هست که قیمت 188 دلار برای 100 عدد از آن خارج از توان مالی خیلی از مبتلایان است. با این حال بررسی ها نشان می دهند در کشورهایی که داروهای ضد ایدز از قبیل AZT به سادگی در دسترس است برنامه های پیشگیری به خصوص در زنان باردار در کاهش تعداد کودکان مبتلا به HIV کاملاً موفق بوده است. همچنین مطالعات نشان داده اند که استفاده از AZT بلافاصله پس از سرنگ آلوده، می تواند تا میزان 80 درصد احتمال ابتلا به HIV را کاهش دهد.

چگونه می شود با ویروس ایدز مبارزه کرد؟

خودتان چه فکر می کنید؟ در واقع برای مبارزه با هر بیماری نخست باید طریقه بیماری زایی هر بیماری را شناخت و بعد سعی کرد به وسیله داروهایی جلوی هر کدام از مراحل را گرفت. پس منطقاَ اگر ما داروهایی بسازیم که جلوی آنزیم های ویروس را بگیرند می توانیم با ویروس مبارزه کنیم.

پیشگیری از ایدز با استفاده از نانو ذرات نقره ساخته می شود:

طبق اولین بررسی هایی که تاکنون روی نانو ذرات فلزی انجام شده بر هم کنش نانو ذرات نقره با ابعاد 1 تا 10 نانومتر با ویروس HIV-1 و چسبیدن این ذرات به آن مانع از اتصال این ویروس به سلول میزبان می شود.
نکته: سلنیوم می تواند تا اندازه ای قدرت سیستم ایمنی را برای مبارزه با ویروس ایدز زیاد کند. درست است که هنوز راهی قطعی برای ریشه کن کردن HIV از بدن بیماران وجود ندارد اما کم و بیش راه هایی هست که می توان تکثیر ویروس را در بدن مهار کرد و سیستم ایمنی بدن را تا اندازه ای در برابر آن مسلح کرد. محققان دانشگاه میامی به تازگی در آزمایش" سلنیوم" روی این بیماران متوجه شده اند که این ماده می تواند تا اندازه ای قدرت سیستم ایمنی را برای مبارزه با ویروس زیاد کند.
 

کریمی که جهان پاینده دارد               تواند حجتی را زنده دارد

 

دانلود پروژه و کارآموزی و کارافرینی

پنج شنبه 12 بهمن 1391  7:30 PM
تشکرات از این پست
دسترسی سریع به انجمن ها