معادلات لاگرانژ برای تمام مختصات یكسان هستند. این معادلات ، روش یك نواختی برای بدست آوردن معادلات دیفرانسیل حركت یك سیستم در انواع سیستمهای ارائه خواهند داد.
اصل تغییرات هامیلتون
روش دیگر برای استنتاج معادلات لاگرانژ اصل تغییرات هامیلتونی است. در این حالت همانگونه كه قبلا نیز اشاره شد در مورد هر سیستم كمیتی به نام تابع هامیلتونی تعریف میشود كه برابر با مجموع انرژی جنبشی و انرژی پتانسیل سیستم است. این اصل در سال 1834 توسط ریاضیدان اپرلندی ویلیام .ر. هامیلتون ارائه شد.
در این روش فرض میشود كه یك تابع پتانسیل وجود دارد، یعنی سیستم تحت بررسی یك سیستم پایاست. ولی اگر تعدادی از نیروها نیز غیر پایستار باشد مانند مورد معادلات لاگرانژ میتوان سهم این نیرو ها را نیز بطور جداگانه منظور كرد. یعنی در این حالت تابع هامیلتون برابر با مجموع انرژی جنبشی و كار انجام شده توسط تمام نیروها اعم از نیروهای پایستار و غیر پایستار است.
معادلات هامیلتون
معدلات هامیلتون از 2
n
معادله دیفرانسیل درجه اول تشكیل شده است. این معادلات بر حسب اندازه حركت تعمیم یافته و مشتقات آن نوشته میشود. اندازه حركت تعمیم یافته به صورت مشتقات تابع لاگرانژی نسبیت به سرعت تعمیم یافته تعریف میشود. بنابراین این معادلات زیر خواهند بود.... .